[11] | 1 | |
---|
| 2 | import time |
---|
| 3 | import statistics |
---|
| 4 | import functools |
---|
| 5 | import pprint |
---|
| 6 | import json |
---|
| 7 | |
---|
| 8 | from .stats import * |
---|
| 9 | from .parallel import WorkerThreads |
---|
| 10 | |
---|
| 11 | def trainBoxTest(db, unusual_case, greater, num_observations): |
---|
| 12 | db.resetOffsets() |
---|
| 13 | |
---|
| 14 | def trainAux(low,high,num_trials): |
---|
| 15 | estimator = functools.partial(multiBoxTest, {'low':low, 'high':high}, greater) |
---|
| 16 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
| 17 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
| 18 | |
---|
| 19 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
| 20 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
| 21 | |
---|
| 22 | false_negatives = 100.0*bad_estimates/num_trials |
---|
| 23 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
| 24 | return false_positives,false_negatives |
---|
| 25 | |
---|
| 26 | #start = time.time() |
---|
| 27 | wt = WorkerThreads(2, trainAux) |
---|
| 28 | |
---|
| 29 | num_trials = 200 |
---|
| 30 | width = 1.0 |
---|
| 31 | performance = [] |
---|
| 32 | for low in range(0,50): |
---|
| 33 | wt.addJob(low, (low,low+width,num_trials)) |
---|
| 34 | wt.wait() |
---|
| 35 | while not wt.resultq.empty(): |
---|
| 36 | job_id,errors = wt.resultq.get() |
---|
| 37 | fp,fn = errors |
---|
| 38 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 39 | performance.sort() |
---|
| 40 | #pprint.pprint(performance) |
---|
| 41 | #print(time.time()-start) |
---|
| 42 | |
---|
| 43 | num_trials = 200 |
---|
| 44 | lows = [p[1] for p in performance[0:5]] |
---|
| 45 | widths = [w/10.0 for w in range(5,65,5)] |
---|
| 46 | performance = [] |
---|
| 47 | for width in widths: |
---|
| 48 | false_positives = [] |
---|
| 49 | false_negatives = [] |
---|
| 50 | for low in lows: |
---|
| 51 | wt.addJob(low,(low,low+width,num_trials)) |
---|
| 52 | wt.wait() |
---|
| 53 | while not wt.resultq.empty(): |
---|
| 54 | job_id,errors = wt.resultq.get() |
---|
| 55 | fp,fn = errors |
---|
| 56 | false_negatives.append(fn) |
---|
| 57 | false_positives.append(fp) |
---|
| 58 | |
---|
| 59 | #print(width, false_negatives) |
---|
| 60 | #print(width, false_positives) |
---|
| 61 | #performance.append(((statistics.mean(false_positives)+statistics.mean(false_negatives))/2.0, |
---|
| 62 | # width, statistics.mean(false_negatives), statistics.mean(false_positives))) |
---|
| 63 | performance.append((abs(statistics.mean(false_positives)-statistics.mean(false_negatives)), |
---|
| 64 | width, statistics.mean(false_negatives), statistics.mean(false_positives))) |
---|
| 65 | performance.sort() |
---|
| 66 | #pprint.pprint(performance) |
---|
| 67 | good_width = performance[0][1] |
---|
| 68 | #print("good_width:",good_width) |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | num_trials = 500 |
---|
| 72 | performance = [] |
---|
| 73 | for low in lows: |
---|
| 74 | wt.addJob(low, (low,low+good_width,num_trials)) |
---|
| 75 | wt.wait() |
---|
| 76 | while not wt.resultq.empty(): |
---|
| 77 | job_id,errors = wt.resultq.get() |
---|
| 78 | fp,fn = errors |
---|
| 79 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 80 | performance.sort() |
---|
| 81 | #pprint.pprint(performance) |
---|
| 82 | best_low = performance[0][1] |
---|
| 83 | #print("best_low:", best_low) |
---|
| 84 | |
---|
| 85 | |
---|
| 86 | num_trials = 500 |
---|
| 87 | widths = [good_width+(x/100.0) for x in range(-70,75,5) if good_width+(x/100.0) > 0.0] |
---|
| 88 | performance = [] |
---|
| 89 | for width in widths: |
---|
| 90 | wt.addJob(width, (best_low,best_low+width,num_trials)) |
---|
| 91 | wt.wait() |
---|
| 92 | while not wt.resultq.empty(): |
---|
| 93 | job_id,errors = wt.resultq.get() |
---|
| 94 | fp,fn = errors |
---|
| 95 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 96 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
| 97 | performance.sort() |
---|
| 98 | #pprint.pprint(performance) |
---|
| 99 | best_width=performance[0][1] |
---|
| 100 | #print("best_width:",best_width) |
---|
| 101 | #print("final_performance:", performance[0][0]) |
---|
| 102 | |
---|
| 103 | wt.stop() |
---|
| 104 | params = json.dumps({"low":best_low,"high":best_low+best_width}, sort_keys=True) |
---|
| 105 | return {'trial_type':"train", |
---|
| 106 | 'num_observations':num_observations, |
---|
| 107 | 'num_trials':num_trials, |
---|
| 108 | 'params':params, |
---|
| 109 | 'false_positives':performance[0][3], |
---|
| 110 | 'false_negatives':performance[0][2]} |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | def trainSummary(summaryFunc, db, unusual_case, greater, num_observations): |
---|
| 114 | db.resetOffsets() |
---|
| 115 | stest = functools.partial(summaryTest, summaryFunc) |
---|
| 116 | |
---|
| 117 | def trainAux(distance, threshold, num_trials): |
---|
| 118 | estimator = functools.partial(stest, {'distance':distance,'threshold':threshold}, greater) |
---|
| 119 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
| 120 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
| 121 | |
---|
| 122 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
| 123 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
| 124 | |
---|
| 125 | false_negatives = 100.0*bad_estimates/num_trials |
---|
| 126 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
| 127 | return false_positives,false_negatives |
---|
| 128 | |
---|
| 129 | #determine expected delta based on differences |
---|
| 130 | mean_diffs = [s['unusual_packet']-s['other_packet'] for s in db.subseries('train', unusual_case)] |
---|
| 131 | threshold = summaryFunc(mean_diffs)/2.0 |
---|
| 132 | #print("init_threshold:", threshold) |
---|
| 133 | |
---|
| 134 | wt = WorkerThreads(2, trainAux) |
---|
| 135 | |
---|
| 136 | num_trials = 500 |
---|
| 137 | performance = [] |
---|
| 138 | for distance in range(1,50): |
---|
| 139 | wt.addJob(distance, (distance,threshold,num_trials)) |
---|
| 140 | wt.wait() |
---|
| 141 | while not wt.resultq.empty(): |
---|
| 142 | job_id,errors = wt.resultq.get() |
---|
| 143 | fp,fn = errors |
---|
| 144 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 145 | |
---|
| 146 | performance.sort() |
---|
| 147 | #pprint.pprint(performance) |
---|
| 148 | good_distance = performance[0][1] |
---|
| 149 | #print("good_distance:",good_distance) |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | num_trials = 500 |
---|
| 153 | performance = [] |
---|
| 154 | for t in range(80,122,2): |
---|
| 155 | wt.addJob(threshold*(t/100.0), (good_distance,threshold*(t/100.0),num_trials)) |
---|
| 156 | wt.wait() |
---|
| 157 | while not wt.resultq.empty(): |
---|
| 158 | job_id,errors = wt.resultq.get() |
---|
| 159 | fp,fn = errors |
---|
| 160 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 161 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
| 162 | performance.sort() |
---|
| 163 | #pprint.pprint(performance) |
---|
| 164 | good_threshold = performance[0][1] |
---|
| 165 | #print("good_threshold:", good_threshold) |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | num_trials = 500 |
---|
| 169 | performance = [] |
---|
| 170 | for d in [good_distance+s for s in range(-4,5) |
---|
| 171 | if good_distance+s > -1 and good_distance+s < 51]: |
---|
| 172 | wt.addJob(d, (d,good_threshold,num_trials)) |
---|
| 173 | wt.wait() |
---|
| 174 | while not wt.resultq.empty(): |
---|
| 175 | job_id,errors = wt.resultq.get() |
---|
| 176 | fp,fn = errors |
---|
| 177 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 178 | performance.sort() |
---|
| 179 | #pprint.pprint(performance) |
---|
| 180 | best_distance = performance[0][1] |
---|
| 181 | #print("best_distance:",best_distance) |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | num_trials = 500 |
---|
| 185 | performance = [] |
---|
| 186 | for t in range(90,111): |
---|
| 187 | wt.addJob(good_threshold*(t/100.0), (best_distance,good_threshold*(t/100.0),num_trials)) |
---|
| 188 | wt.wait() |
---|
| 189 | while not wt.resultq.empty(): |
---|
| 190 | job_id,errors = wt.resultq.get() |
---|
| 191 | fp,fn = errors |
---|
| 192 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 193 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
| 194 | performance.sort() |
---|
| 195 | #pprint.pprint(performance) |
---|
| 196 | best_threshold = performance[0][1] |
---|
| 197 | #print("best_threshold:", best_threshold) |
---|
| 198 | |
---|
| 199 | wt.stop() |
---|
| 200 | params = json.dumps({'distance':best_distance,'threshold':best_threshold}, sort_keys=True) |
---|
| 201 | return {'trial_type':"train", |
---|
| 202 | 'num_observations':num_observations, |
---|
| 203 | 'num_trials':num_trials, |
---|
| 204 | 'params':params, |
---|
| 205 | 'false_positives':performance[0][3], |
---|
| 206 | 'false_negatives':performance[0][2]} |
---|
| 207 | |
---|
| 208 | |
---|
| 209 | def trainKalman(db, unusual_case, greater, num_observations): |
---|
| 210 | db.resetOffsets() |
---|
| 211 | |
---|
| 212 | def trainAux(params, num_trials): |
---|
| 213 | estimator = functools.partial(kalmanTest, params, greater) |
---|
| 214 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
| 215 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
| 216 | |
---|
| 217 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
| 218 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
| 219 | |
---|
| 220 | false_negatives = 100.0*bad_estimates/num_trials |
---|
| 221 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
| 222 | return false_positives,false_negatives |
---|
| 223 | |
---|
| 224 | mean_diffs = [s['unusual_packet']-s['other_packet'] for s in db.subseries('train', unusual_case)] |
---|
| 225 | good_threshold = kfilter({},mean_diffs)['est'][-1]/2.0 |
---|
| 226 | |
---|
| 227 | wt = WorkerThreads(2, trainAux) |
---|
| 228 | num_trials = 200 |
---|
| 229 | performance = [] |
---|
| 230 | for t in range(90,111): |
---|
| 231 | params = {'threshold':good_threshold*(t/100.0)} |
---|
| 232 | wt.addJob(good_threshold*(t/100.0), (params,num_trials)) |
---|
| 233 | wt.wait() |
---|
| 234 | while not wt.resultq.empty(): |
---|
| 235 | job_id,errors = wt.resultq.get() |
---|
| 236 | fp,fn = errors |
---|
| 237 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 238 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
| 239 | performance.sort() |
---|
| 240 | #pprint.pprint(performance) |
---|
| 241 | best_threshold = performance[0][1] |
---|
| 242 | #print("best_threshold:", best_threshold) |
---|
| 243 | params = {'threshold':best_threshold} |
---|
| 244 | |
---|
| 245 | wt.stop() |
---|
| 246 | |
---|
| 247 | return {'trial_type':"train", |
---|
| 248 | 'num_observations':num_observations, |
---|
| 249 | 'num_trials':num_trials, |
---|
| 250 | 'params':json.dumps(params, sort_keys=True), |
---|
| 251 | 'false_positives':performance[0][3], |
---|
| 252 | 'false_negatives':performance[0][2]} |
---|
| 253 | |
---|
| 254 | |
---|
| 255 | def trainTsval(db, unusual_case, greater, num_observations): |
---|
| 256 | db.resetOffsets() |
---|
| 257 | |
---|
| 258 | def trainAux(params, num_trials): |
---|
| 259 | estimator = functools.partial(tsvalwmeanTest, params, greater) |
---|
| 260 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
| 261 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
| 262 | |
---|
| 263 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
| 264 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
| 265 | |
---|
| 266 | false_negatives = 100.0*bad_estimates/num_trials |
---|
| 267 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
| 268 | return false_positives,false_negatives |
---|
| 269 | |
---|
| 270 | train = db.subseries('train', unusual_case) |
---|
| 271 | null = db.subseries('train_null', unusual_case) |
---|
| 272 | good_threshold = (tsvalwmean(train)+tsvalwmean(null))/2.0 |
---|
| 273 | |
---|
| 274 | wt = WorkerThreads(2, trainAux) |
---|
| 275 | num_trials = 200 |
---|
| 276 | performance = [] |
---|
| 277 | for t in range(90,111): |
---|
| 278 | params = {'threshold':good_threshold*(t/100.0)} |
---|
| 279 | wt.addJob(good_threshold*(t/100.0), (params,num_trials)) |
---|
| 280 | wt.wait() |
---|
| 281 | while not wt.resultq.empty(): |
---|
| 282 | job_id,errors = wt.resultq.get() |
---|
| 283 | fp,fn = errors |
---|
| 284 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 285 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
| 286 | performance.sort() |
---|
| 287 | #pprint.pprint(performance) |
---|
| 288 | best_threshold = performance[0][1] |
---|
| 289 | #print("best_threshold:", best_threshold) |
---|
| 290 | params = {'threshold':best_threshold} |
---|
| 291 | |
---|
| 292 | wt.stop() |
---|
| 293 | |
---|
| 294 | return {'trial_type':"train", |
---|
| 295 | 'num_observations':num_observations, |
---|
| 296 | 'num_trials':num_trials, |
---|
| 297 | 'params':json.dumps(params, sort_keys=True), |
---|
| 298 | 'false_positives':performance[0][3], |
---|
| 299 | 'false_negatives':performance[0][2]} |
---|
| 300 | |
---|
| 301 | |
---|
| 302 | classifiers = {'boxtest':{'train':trainBoxTest, 'test':multiBoxTest, 'train_results':[]}, |
---|
| 303 | 'midsummary':{'train':functools.partial(trainSummary, midsummary), 'test':midsummaryTest, 'train_results':[]}, |
---|
| 304 | 'ubersummary':{'train':functools.partial(trainSummary, ubersummary), 'test':ubersummaryTest, 'train_results':[]}, |
---|
| 305 | 'quadsummary':{'train':functools.partial(trainSummary, quadsummary), 'test':quadsummaryTest, 'train_results':[]}, |
---|
| 306 | 'tsvalwmean':{'train':trainTsval, 'test':tsvalwmeanTest, 'train_results':[]}, |
---|
| 307 | #'kalman':{'train':trainKalman, 'test':kalmanTest, 'train_results':[]}, |
---|
| 308 | #'_trimean':{'train':None, 'test':trimeanTest, 'train_results':[]}, |
---|
| 309 | } |
---|