1 | |
---|
2 | import time |
---|
3 | import statistics |
---|
4 | import functools |
---|
5 | import pprint |
---|
6 | import json |
---|
7 | |
---|
8 | from .stats import * |
---|
9 | from .parallel import WorkerThreads |
---|
10 | |
---|
11 | def trainBoxTest(db, unusual_case, greater, num_observations): |
---|
12 | db.resetOffsets() |
---|
13 | |
---|
14 | def trainAux(low,high,num_trials): |
---|
15 | estimator = functools.partial(multiBoxTest, {'low':low, 'high':high}, greater) |
---|
16 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
17 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
18 | |
---|
19 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
20 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
21 | |
---|
22 | false_negatives = 100.0*bad_estimates/num_trials |
---|
23 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
24 | return false_positives,false_negatives |
---|
25 | |
---|
26 | #start = time.time() |
---|
27 | wt = WorkerThreads(2, trainAux) |
---|
28 | |
---|
29 | num_trials = 200 |
---|
30 | width = 1.0 |
---|
31 | performance = [] |
---|
32 | for low in range(0,50): |
---|
33 | wt.addJob(low, (low,low+width,num_trials)) |
---|
34 | wt.wait() |
---|
35 | while not wt.resultq.empty(): |
---|
36 | job_id,errors = wt.resultq.get() |
---|
37 | fp,fn = errors |
---|
38 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
39 | performance.sort() |
---|
40 | #pprint.pprint(performance) |
---|
41 | #print(time.time()-start) |
---|
42 | |
---|
43 | num_trials = 200 |
---|
44 | lows = [p[1] for p in performance[0:5]] |
---|
45 | widths = [w/10.0 for w in range(5,65,5)] |
---|
46 | performance = [] |
---|
47 | for width in widths: |
---|
48 | false_positives = [] |
---|
49 | false_negatives = [] |
---|
50 | for low in lows: |
---|
51 | wt.addJob(low,(low,low+width,num_trials)) |
---|
52 | wt.wait() |
---|
53 | while not wt.resultq.empty(): |
---|
54 | job_id,errors = wt.resultq.get() |
---|
55 | fp,fn = errors |
---|
56 | false_negatives.append(fn) |
---|
57 | false_positives.append(fp) |
---|
58 | |
---|
59 | #print(width, false_negatives) |
---|
60 | #print(width, false_positives) |
---|
61 | #performance.append(((statistics.mean(false_positives)+statistics.mean(false_negatives))/2.0, |
---|
62 | # width, statistics.mean(false_negatives), statistics.mean(false_positives))) |
---|
63 | performance.append((abs(statistics.mean(false_positives)-statistics.mean(false_negatives)), |
---|
64 | width, statistics.mean(false_negatives), statistics.mean(false_positives))) |
---|
65 | performance.sort() |
---|
66 | #pprint.pprint(performance) |
---|
67 | good_width = performance[0][1] |
---|
68 | #print("good_width:",good_width) |
---|
69 | |
---|
70 | |
---|
71 | num_trials = 500 |
---|
72 | performance = [] |
---|
73 | for low in lows: |
---|
74 | wt.addJob(low, (low,low+good_width,num_trials)) |
---|
75 | wt.wait() |
---|
76 | while not wt.resultq.empty(): |
---|
77 | job_id,errors = wt.resultq.get() |
---|
78 | fp,fn = errors |
---|
79 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
80 | performance.sort() |
---|
81 | #pprint.pprint(performance) |
---|
82 | best_low = performance[0][1] |
---|
83 | #print("best_low:", best_low) |
---|
84 | |
---|
85 | |
---|
86 | num_trials = 500 |
---|
87 | widths = [good_width+(x/100.0) for x in range(-70,75,5) if good_width+(x/100.0) > 0.0] |
---|
88 | performance = [] |
---|
89 | for width in widths: |
---|
90 | wt.addJob(width, (best_low,best_low+width,num_trials)) |
---|
91 | wt.wait() |
---|
92 | while not wt.resultq.empty(): |
---|
93 | job_id,errors = wt.resultq.get() |
---|
94 | fp,fn = errors |
---|
95 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
96 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
97 | performance.sort() |
---|
98 | #pprint.pprint(performance) |
---|
99 | best_width=performance[0][1] |
---|
100 | #print("best_width:",best_width) |
---|
101 | #print("final_performance:", performance[0][0]) |
---|
102 | |
---|
103 | wt.stop() |
---|
104 | params = json.dumps({"low":best_low,"high":best_low+best_width}, sort_keys=True) |
---|
105 | return {'trial_type':"train", |
---|
106 | 'num_observations':num_observations, |
---|
107 | 'num_trials':num_trials, |
---|
108 | 'params':params, |
---|
109 | 'false_positives':performance[0][3], |
---|
110 | 'false_negatives':performance[0][2]} |
---|
111 | |
---|
112 | |
---|
113 | def trainSummary(summaryFunc, db, unusual_case, greater, num_observations): |
---|
114 | db.resetOffsets() |
---|
115 | stest = functools.partial(summaryTest, summaryFunc) |
---|
116 | |
---|
117 | def trainAux(distance, threshold, num_trials): |
---|
118 | estimator = functools.partial(stest, {'distance':distance,'threshold':threshold}, greater) |
---|
119 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
120 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
121 | |
---|
122 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
123 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
124 | |
---|
125 | false_negatives = 100.0*bad_estimates/num_trials |
---|
126 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
127 | return false_positives,false_negatives |
---|
128 | |
---|
129 | #determine expected delta based on differences |
---|
130 | mean_diffs = [s['unusual_packet']-s['other_packet'] for s in db.subseries('train', unusual_case)] |
---|
131 | threshold = summaryFunc(mean_diffs)/2.0 |
---|
132 | #print("init_threshold:", threshold) |
---|
133 | |
---|
134 | wt = WorkerThreads(2, trainAux) |
---|
135 | |
---|
136 | num_trials = 500 |
---|
137 | performance = [] |
---|
138 | for distance in range(1,50): |
---|
139 | wt.addJob(distance, (distance,threshold,num_trials)) |
---|
140 | wt.wait() |
---|
141 | while not wt.resultq.empty(): |
---|
142 | job_id,errors = wt.resultq.get() |
---|
143 | fp,fn = errors |
---|
144 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
145 | |
---|
146 | performance.sort() |
---|
147 | #pprint.pprint(performance) |
---|
148 | good_distance = performance[0][1] |
---|
149 | #print("good_distance:",good_distance) |
---|
150 | |
---|
151 | |
---|
152 | num_trials = 500 |
---|
153 | performance = [] |
---|
154 | for t in range(80,122,2): |
---|
155 | wt.addJob(threshold*(t/100.0), (good_distance,threshold*(t/100.0),num_trials)) |
---|
156 | wt.wait() |
---|
157 | while not wt.resultq.empty(): |
---|
158 | job_id,errors = wt.resultq.get() |
---|
159 | fp,fn = errors |
---|
160 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
161 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
162 | performance.sort() |
---|
163 | #pprint.pprint(performance) |
---|
164 | good_threshold = performance[0][1] |
---|
165 | #print("good_threshold:", good_threshold) |
---|
166 | |
---|
167 | |
---|
168 | num_trials = 500 |
---|
169 | performance = [] |
---|
170 | for d in [good_distance+s for s in range(-4,5) |
---|
171 | if good_distance+s > -1 and good_distance+s < 51]: |
---|
172 | wt.addJob(d, (d,good_threshold,num_trials)) |
---|
173 | wt.wait() |
---|
174 | while not wt.resultq.empty(): |
---|
175 | job_id,errors = wt.resultq.get() |
---|
176 | fp,fn = errors |
---|
177 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
178 | performance.sort() |
---|
179 | #pprint.pprint(performance) |
---|
180 | best_distance = performance[0][1] |
---|
181 | #print("best_distance:",best_distance) |
---|
182 | |
---|
183 | |
---|
184 | num_trials = 500 |
---|
185 | performance = [] |
---|
186 | for t in range(90,111): |
---|
187 | wt.addJob(good_threshold*(t/100.0), (best_distance,good_threshold*(t/100.0),num_trials)) |
---|
188 | wt.wait() |
---|
189 | while not wt.resultq.empty(): |
---|
190 | job_id,errors = wt.resultq.get() |
---|
191 | fp,fn = errors |
---|
192 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
193 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
194 | performance.sort() |
---|
195 | #pprint.pprint(performance) |
---|
196 | best_threshold = performance[0][1] |
---|
197 | #print("best_threshold:", best_threshold) |
---|
198 | |
---|
199 | wt.stop() |
---|
200 | params = json.dumps({'distance':best_distance,'threshold':best_threshold}, sort_keys=True) |
---|
201 | return {'trial_type':"train", |
---|
202 | 'num_observations':num_observations, |
---|
203 | 'num_trials':num_trials, |
---|
204 | 'params':params, |
---|
205 | 'false_positives':performance[0][3], |
---|
206 | 'false_negatives':performance[0][2]} |
---|
207 | |
---|
208 | |
---|
209 | def trainKalman(db, unusual_case, greater, num_observations): |
---|
210 | db.resetOffsets() |
---|
211 | |
---|
212 | def trainAux(params, num_trials): |
---|
213 | estimator = functools.partial(kalmanTest, params, greater) |
---|
214 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
215 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
216 | |
---|
217 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
218 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
219 | |
---|
220 | false_negatives = 100.0*bad_estimates/num_trials |
---|
221 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
222 | return false_positives,false_negatives |
---|
223 | |
---|
224 | mean_diffs = [s['unusual_packet']-s['other_packet'] for s in db.subseries('train', unusual_case)] |
---|
225 | good_threshold = kfilter({},mean_diffs)['est'][-1]/2.0 |
---|
226 | |
---|
227 | wt = WorkerThreads(2, trainAux) |
---|
228 | num_trials = 200 |
---|
229 | performance = [] |
---|
230 | for t in range(90,111): |
---|
231 | params = {'threshold':good_threshold*(t/100.0)} |
---|
232 | wt.addJob(good_threshold*(t/100.0), (params,num_trials)) |
---|
233 | wt.wait() |
---|
234 | while not wt.resultq.empty(): |
---|
235 | job_id,errors = wt.resultq.get() |
---|
236 | fp,fn = errors |
---|
237 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
238 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
239 | performance.sort() |
---|
240 | #pprint.pprint(performance) |
---|
241 | best_threshold = performance[0][1] |
---|
242 | #print("best_threshold:", best_threshold) |
---|
243 | params = {'threshold':best_threshold} |
---|
244 | |
---|
245 | wt.stop() |
---|
246 | |
---|
247 | return {'trial_type':"train", |
---|
248 | 'num_observations':num_observations, |
---|
249 | 'num_trials':num_trials, |
---|
250 | 'params':json.dumps(params, sort_keys=True), |
---|
251 | 'false_positives':performance[0][3], |
---|
252 | 'false_negatives':performance[0][2]} |
---|
253 | |
---|
254 | |
---|
255 | def trainTsval(db, unusual_case, greater, num_observations): |
---|
256 | db.resetOffsets() |
---|
257 | |
---|
258 | def trainAux(params, num_trials): |
---|
259 | estimator = functools.partial(tsvalwmeanTest, params, greater) |
---|
260 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
261 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
262 | |
---|
263 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
264 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
265 | |
---|
266 | false_negatives = 100.0*bad_estimates/num_trials |
---|
267 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
268 | return false_positives,false_negatives |
---|
269 | |
---|
270 | train = db.subseries('train', unusual_case) |
---|
271 | null = db.subseries('train_null', unusual_case) |
---|
272 | good_threshold = (tsvalwmean(train)+tsvalwmean(null))/2.0 |
---|
273 | |
---|
274 | wt = WorkerThreads(2, trainAux) |
---|
275 | num_trials = 200 |
---|
276 | performance = [] |
---|
277 | for t in range(90,111): |
---|
278 | params = {'threshold':good_threshold*(t/100.0)} |
---|
279 | wt.addJob(good_threshold*(t/100.0), (params,num_trials)) |
---|
280 | wt.wait() |
---|
281 | while not wt.resultq.empty(): |
---|
282 | job_id,errors = wt.resultq.get() |
---|
283 | fp,fn = errors |
---|
284 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
285 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
286 | performance.sort() |
---|
287 | #pprint.pprint(performance) |
---|
288 | best_threshold = performance[0][1] |
---|
289 | #print("best_threshold:", best_threshold) |
---|
290 | params = {'threshold':best_threshold} |
---|
291 | |
---|
292 | wt.stop() |
---|
293 | |
---|
294 | return {'trial_type':"train", |
---|
295 | 'num_observations':num_observations, |
---|
296 | 'num_trials':num_trials, |
---|
297 | 'params':json.dumps(params, sort_keys=True), |
---|
298 | 'false_positives':performance[0][3], |
---|
299 | 'false_negatives':performance[0][2]} |
---|
300 | |
---|
301 | |
---|
302 | classifiers = {'boxtest':{'train':trainBoxTest, 'test':multiBoxTest, 'train_results':[]}, |
---|
303 | 'midsummary':{'train':functools.partial(trainSummary, midsummary), 'test':midsummaryTest, 'train_results':[]}, |
---|
304 | 'ubersummary':{'train':functools.partial(trainSummary, ubersummary), 'test':ubersummaryTest, 'train_results':[]}, |
---|
305 | 'quadsummary':{'train':functools.partial(trainSummary, quadsummary), 'test':quadsummaryTest, 'train_results':[]}, |
---|
306 | 'tsvalwmean':{'train':trainTsval, 'test':tsvalwmeanTest, 'train_results':[]}, |
---|
307 | #'kalman':{'train':trainKalman, 'test':kalmanTest, 'train_results':[]}, |
---|
308 | #'_trimean':{'train':None, 'test':trimeanTest, 'train_results':[]}, |
---|
309 | } |
---|