[4] | 1 | #!/usr/bin/env python3 |
---|
| 2 | #-*- mode: Python;-*- |
---|
| 3 | |
---|
| 4 | import sys |
---|
| 5 | import os |
---|
| 6 | import time |
---|
| 7 | import random |
---|
| 8 | import statistics |
---|
| 9 | import functools |
---|
| 10 | import argparse |
---|
| 11 | import pprint |
---|
| 12 | import json |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | VERSION = "{DEVELOPMENT}" |
---|
| 16 | if VERSION == "{DEVELOPMENT}": |
---|
| 17 | script_dir = '.' |
---|
| 18 | try: |
---|
| 19 | script_dir = os.path.dirname(os.path.realpath(__file__)) |
---|
| 20 | except: |
---|
| 21 | try: |
---|
| 22 | script_dir = os.path.dirname(os.path.abspath(sys.argv[0])) |
---|
| 23 | except: |
---|
| 24 | pass |
---|
| 25 | sys.path.append("%s/../lib" % script_dir) |
---|
| 26 | |
---|
| 27 | from nanownlib import * |
---|
[10] | 28 | from nanownlib.stats import * |
---|
| 29 | from nanownlib.parallel import WorkerThreads |
---|
[4] | 30 | import nanownlib.storage |
---|
| 31 | |
---|
[9] | 32 | |
---|
[10] | 33 | |
---|
[4] | 34 | parser = argparse.ArgumentParser( |
---|
| 35 | description="") |
---|
| 36 | #parser.add_argument('-c', dest='cases', type=str, default='{"short":10000,"long":1010000}', |
---|
| 37 | # help='JSON representation of echo timing cases. Default: {"short":10000,"long":1010000}') |
---|
[10] | 38 | parser.add_argument('--retrain', action='append', default=[], help='Force a classifier to be retrained. May be specified multiple times.') |
---|
| 39 | parser.add_argument('--retest', action='append', default=[], help='Force a classifier to be retested. May be specified multiple times.') |
---|
[4] | 40 | parser.add_argument('session_data', default=None, |
---|
| 41 | help='Database file storing session information') |
---|
| 42 | options = parser.parse_args() |
---|
| 43 | |
---|
| 44 | |
---|
[10] | 45 | def trainBoxTest(db, unusual_case, greater, num_observations): |
---|
| 46 | db.resetOffsets() |
---|
| 47 | |
---|
[4] | 48 | def trainAux(low,high,num_trials): |
---|
[8] | 49 | estimator = functools.partial(multiBoxTest, {'low':low, 'high':high}, greater) |
---|
[10] | 50 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
| 51 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
[4] | 52 | |
---|
| 53 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
| 54 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
| 55 | |
---|
| 56 | false_negatives = 100.0*bad_estimates/num_trials |
---|
| 57 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
| 58 | return false_positives,false_negatives |
---|
| 59 | |
---|
[9] | 60 | #start = time.time() |
---|
[4] | 61 | wt = WorkerThreads(2, trainAux) |
---|
| 62 | |
---|
| 63 | num_trials = 200 |
---|
[8] | 64 | width = 1.0 |
---|
[4] | 65 | performance = [] |
---|
[8] | 66 | for low in range(0,50): |
---|
[4] | 67 | wt.addJob(low, (low,low+width,num_trials)) |
---|
| 68 | wt.wait() |
---|
| 69 | while not wt.resultq.empty(): |
---|
| 70 | job_id,errors = wt.resultq.get() |
---|
| 71 | fp,fn = errors |
---|
| 72 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 73 | performance.sort() |
---|
[9] | 74 | #pprint.pprint(performance) |
---|
| 75 | #print(time.time()-start) |
---|
[4] | 76 | |
---|
[8] | 77 | num_trials = 200 |
---|
[4] | 78 | lows = [p[1] for p in performance[0:5]] |
---|
[8] | 79 | widths = [w/10.0 for w in range(5,65,5)] |
---|
[4] | 80 | performance = [] |
---|
| 81 | for width in widths: |
---|
| 82 | false_positives = [] |
---|
| 83 | false_negatives = [] |
---|
| 84 | for low in lows: |
---|
| 85 | wt.addJob(low,(low,low+width,num_trials)) |
---|
| 86 | wt.wait() |
---|
| 87 | while not wt.resultq.empty(): |
---|
| 88 | job_id,errors = wt.resultq.get() |
---|
| 89 | fp,fn = errors |
---|
| 90 | false_negatives.append(fn) |
---|
| 91 | false_positives.append(fp) |
---|
| 92 | |
---|
| 93 | #print(width, false_negatives) |
---|
| 94 | #print(width, false_positives) |
---|
[8] | 95 | #performance.append(((statistics.mean(false_positives)+statistics.mean(false_negatives))/2.0, |
---|
| 96 | # width, statistics.mean(false_negatives), statistics.mean(false_positives))) |
---|
| 97 | performance.append((abs(statistics.mean(false_positives)-statistics.mean(false_negatives)), |
---|
[4] | 98 | width, statistics.mean(false_negatives), statistics.mean(false_positives))) |
---|
| 99 | performance.sort() |
---|
[9] | 100 | #pprint.pprint(performance) |
---|
[4] | 101 | good_width = performance[0][1] |
---|
[9] | 102 | #print("good_width:",good_width) |
---|
[4] | 103 | |
---|
| 104 | |
---|
[8] | 105 | num_trials = 500 |
---|
[4] | 106 | performance = [] |
---|
| 107 | for low in lows: |
---|
| 108 | wt.addJob(low, (low,low+good_width,num_trials)) |
---|
| 109 | wt.wait() |
---|
| 110 | while not wt.resultq.empty(): |
---|
| 111 | job_id,errors = wt.resultq.get() |
---|
| 112 | fp,fn = errors |
---|
| 113 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 114 | performance.sort() |
---|
[9] | 115 | #pprint.pprint(performance) |
---|
[4] | 116 | best_low = performance[0][1] |
---|
[9] | 117 | #print("best_low:", best_low) |
---|
[4] | 118 | |
---|
[8] | 119 | |
---|
| 120 | num_trials = 500 |
---|
[10] | 121 | widths = [good_width+(x/100.0) for x in range(-70,75,5) if good_width+(x/100.0) > 0.0] |
---|
[4] | 122 | performance = [] |
---|
| 123 | for width in widths: |
---|
| 124 | wt.addJob(width, (best_low,best_low+width,num_trials)) |
---|
| 125 | wt.wait() |
---|
| 126 | while not wt.resultq.empty(): |
---|
| 127 | job_id,errors = wt.resultq.get() |
---|
| 128 | fp,fn = errors |
---|
[10] | 129 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 130 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
[4] | 131 | performance.sort() |
---|
[9] | 132 | #pprint.pprint(performance) |
---|
[4] | 133 | best_width=performance[0][1] |
---|
[9] | 134 | #print("best_width:",best_width) |
---|
| 135 | #print("final_performance:", performance[0][0]) |
---|
| 136 | |
---|
| 137 | wt.stop() |
---|
[8] | 138 | params = json.dumps({"low":best_low,"high":best_low+best_width}) |
---|
[10] | 139 | return {'trial_type':"train", |
---|
| 140 | 'num_observations':num_observations, |
---|
| 141 | 'num_trials':num_trials, |
---|
[4] | 142 | 'params':params, |
---|
| 143 | 'false_positives':performance[0][3], |
---|
| 144 | 'false_negatives':performance[0][2]} |
---|
| 145 | |
---|
| 146 | |
---|
[10] | 147 | def trainSummary(summaryFunc, db, unusual_case, greater, num_observations): |
---|
| 148 | db.resetOffsets() |
---|
| 149 | stest = functools.partial(summaryTest, summaryFunc) |
---|
| 150 | |
---|
[4] | 151 | def trainAux(distance, threshold, num_trials): |
---|
[10] | 152 | estimator = functools.partial(stest, {'distance':distance,'threshold':threshold}, greater) |
---|
| 153 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
| 154 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
[4] | 155 | |
---|
| 156 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
| 157 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
| 158 | |
---|
| 159 | false_negatives = 100.0*bad_estimates/num_trials |
---|
| 160 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
| 161 | return false_positives,false_negatives |
---|
| 162 | |
---|
| 163 | #determine expected delta based on differences |
---|
[8] | 164 | mean_diffs = [s['unusual_case']-s['other_cases'] for s in db.subseries('train', unusual_case)] |
---|
[10] | 165 | threshold = summaryFunc(mean_diffs)/2.0 |
---|
[9] | 166 | #print("init_threshold:", threshold) |
---|
[4] | 167 | |
---|
[8] | 168 | wt = WorkerThreads(2, trainAux) |
---|
[4] | 169 | |
---|
[8] | 170 | num_trials = 500 |
---|
[4] | 171 | performance = [] |
---|
[8] | 172 | for distance in range(1,50): |
---|
[4] | 173 | wt.addJob(distance, (distance,threshold,num_trials)) |
---|
| 174 | wt.wait() |
---|
| 175 | while not wt.resultq.empty(): |
---|
| 176 | job_id,errors = wt.resultq.get() |
---|
| 177 | fp,fn = errors |
---|
| 178 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
[6] | 179 | |
---|
[4] | 180 | performance.sort() |
---|
[8] | 181 | #pprint.pprint(performance) |
---|
[4] | 182 | good_distance = performance[0][1] |
---|
[9] | 183 | #print("good_distance:",good_distance) |
---|
[4] | 184 | |
---|
| 185 | |
---|
[8] | 186 | num_trials = 500 |
---|
[4] | 187 | performance = [] |
---|
[10] | 188 | for t in range(80,122,2): |
---|
[4] | 189 | wt.addJob(threshold*(t/100.0), (good_distance,threshold*(t/100.0),num_trials)) |
---|
| 190 | wt.wait() |
---|
| 191 | while not wt.resultq.empty(): |
---|
| 192 | job_id,errors = wt.resultq.get() |
---|
| 193 | fp,fn = errors |
---|
[10] | 194 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 195 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
[4] | 196 | performance.sort() |
---|
[8] | 197 | #pprint.pprint(performance) |
---|
[4] | 198 | good_threshold = performance[0][1] |
---|
[9] | 199 | #print("good_threshold:", good_threshold) |
---|
[4] | 200 | |
---|
| 201 | |
---|
[8] | 202 | num_trials = 500 |
---|
[4] | 203 | performance = [] |
---|
[8] | 204 | for d in [good_distance+s for s in range(-4,5) if good_distance+s > -1]: |
---|
| 205 | wt.addJob(d, (d,good_threshold,num_trials)) |
---|
[4] | 206 | wt.wait() |
---|
| 207 | while not wt.resultq.empty(): |
---|
| 208 | job_id,errors = wt.resultq.get() |
---|
| 209 | fp,fn = errors |
---|
| 210 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 211 | performance.sort() |
---|
[8] | 212 | #pprint.pprint(performance) |
---|
[4] | 213 | best_distance = performance[0][1] |
---|
[9] | 214 | #print("best_distance:",best_distance) |
---|
[8] | 215 | |
---|
[6] | 216 | |
---|
[8] | 217 | num_trials = 500 |
---|
[4] | 218 | performance = [] |
---|
[9] | 219 | for t in range(90,111): |
---|
[4] | 220 | wt.addJob(good_threshold*(t/100.0), (best_distance,good_threshold*(t/100.0),num_trials)) |
---|
| 221 | wt.wait() |
---|
| 222 | while not wt.resultq.empty(): |
---|
| 223 | job_id,errors = wt.resultq.get() |
---|
| 224 | fp,fn = errors |
---|
[10] | 225 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 226 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
[4] | 227 | performance.sort() |
---|
[8] | 228 | #pprint.pprint(performance) |
---|
[4] | 229 | best_threshold = performance[0][1] |
---|
[9] | 230 | #print("best_threshold:", best_threshold) |
---|
[4] | 231 | |
---|
[9] | 232 | wt.stop() |
---|
[4] | 233 | params = json.dumps({'distance':best_distance,'threshold':best_threshold}) |
---|
[10] | 234 | return {'trial_type':"train", |
---|
| 235 | 'num_observations':num_observations, |
---|
| 236 | 'num_trials':num_trials, |
---|
[4] | 237 | 'params':params, |
---|
[10] | 238 | 'false_positives':performance[0][3], |
---|
| 239 | 'false_negatives':performance[0][2]} |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | def trainKalman(db, unusual_case, greater, num_observations): |
---|
| 243 | db.resetOffsets() |
---|
| 244 | |
---|
| 245 | def trainAux(params, num_trials): |
---|
| 246 | estimator = functools.partial(kalmanTest, params, greater) |
---|
| 247 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
| 248 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
| 249 | |
---|
| 250 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
| 251 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
| 252 | |
---|
| 253 | false_negatives = 100.0*bad_estimates/num_trials |
---|
| 254 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
| 255 | return false_positives,false_negatives |
---|
| 256 | |
---|
| 257 | mean_diffs = [s['unusual_case']-s['other_cases'] for s in db.subseries('train', unusual_case)] |
---|
| 258 | good_threshold = kfilter({},mean_diffs)['est'][-1]/2.0 |
---|
| 259 | |
---|
| 260 | wt = WorkerThreads(2, trainAux) |
---|
| 261 | num_trials = 200 |
---|
| 262 | performance = [] |
---|
| 263 | for t in range(90,111): |
---|
| 264 | params = {'threshold':good_threshold*(t/100.0)} |
---|
| 265 | wt.addJob(good_threshold*(t/100.0), (params,num_trials)) |
---|
| 266 | wt.wait() |
---|
| 267 | while not wt.resultq.empty(): |
---|
| 268 | job_id,errors = wt.resultq.get() |
---|
| 269 | fp,fn = errors |
---|
| 270 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
| 271 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
| 272 | performance.sort() |
---|
| 273 | #pprint.pprint(performance) |
---|
| 274 | best_threshold = performance[0][1] |
---|
| 275 | #print("best_threshold:", best_threshold) |
---|
| 276 | params = {'threshold':best_threshold} |
---|
| 277 | |
---|
| 278 | wt.stop() |
---|
| 279 | |
---|
| 280 | return {'trial_type':"train", |
---|
| 281 | 'num_observations':num_observations, |
---|
[4] | 282 | 'num_trials':num_trials, |
---|
[10] | 283 | 'params':json.dumps(params), |
---|
[4] | 284 | 'false_positives':performance[0][3], |
---|
| 285 | 'false_negatives':performance[0][2]} |
---|
| 286 | |
---|
[10] | 287 | |
---|
| 288 | #determine expected delta based on differences |
---|
| 289 | classifiers = {'boxtest':{'train':trainBoxTest, 'test':multiBoxTest, 'train_results':[]}, |
---|
| 290 | 'midsummary':{'train':functools.partial(trainSummary, midsummary), 'test':midsummaryTest, 'train_results':[]}, |
---|
| 291 | #'ubersummary':{'train':functools.partial(trainSummary, ubersummary), 'test':ubersummaryTest, 'train_results':[]}, |
---|
| 292 | 'quadsummary':{'train':functools.partial(trainSummary, quadsummary), 'test':quadsummaryTest, 'train_results':[]}, |
---|
| 293 | 'kalman':{'train':trainKalman, 'test':kalmanTest, 'train_results':[]}, |
---|
| 294 | #'_trimean':{'train':None, 'test':trimeanTest, 'train_results':[]}, |
---|
| 295 | } |
---|
[4] | 296 | |
---|
| 297 | |
---|
| 298 | db = nanownlib.storage.db(options.session_data) |
---|
| 299 | |
---|
[9] | 300 | import cProfile |
---|
| 301 | |
---|
[10] | 302 | def trainClassifier(db, unusual_case, greater, classifier, retrain=False): |
---|
| 303 | if retrain: |
---|
| 304 | print("Dropping stored training results...") |
---|
| 305 | db.deleteClassifierResults(classifier, 'train') |
---|
| 306 | |
---|
| 307 | trainer = classifiers[classifier]['train'] |
---|
[9] | 308 | threshold = 5.0 # in percent |
---|
[10] | 309 | num_obs = 1000 |
---|
| 310 | max_obs = int(db.populationSize('train')/5) |
---|
[9] | 311 | result = None |
---|
[10] | 312 | while num_obs < max_obs: |
---|
| 313 | num_obs = min(int(num_obs*1.5), max_obs) |
---|
| 314 | result = db.fetchClassifierResult(classifier, 'train', num_obs) |
---|
| 315 | if result != None: |
---|
| 316 | train_time = "(stored)" |
---|
| 317 | else: |
---|
| 318 | start = time.time() |
---|
| 319 | result = trainer(db,unusual_case,greater,num_obs) |
---|
| 320 | result['classifier'] = classifier |
---|
| 321 | train_time = "%f" % (time.time()-start) |
---|
| 322 | |
---|
[9] | 323 | error = statistics.mean([result['false_positives'],result['false_negatives']]) |
---|
[10] | 324 | print("number of observations: %d | error: %f | false_positives: %f | false_negatives: %f | train time: %s | params: %s" |
---|
| 325 | % (num_obs, error, result['false_positives'],result['false_negatives'], train_time, result['params'])) |
---|
| 326 | db.addClassifierResults(result) |
---|
| 327 | classifiers[classifier]['train_results'].append(result) |
---|
| 328 | |
---|
[9] | 329 | if error < threshold: |
---|
| 330 | break |
---|
| 331 | |
---|
| 332 | return result |
---|
| 333 | |
---|
| 334 | |
---|
[10] | 335 | |
---|
| 336 | def testClassifier(db, unusual_case, greater, classifier, retest=False): |
---|
| 337 | target_error = 5.0 # in percent |
---|
| 338 | num_trials = 1000 |
---|
| 339 | max_obs = int(db.populationSize('test')/5) |
---|
| 340 | |
---|
| 341 | tester = classifiers[classifier]['test'] |
---|
| 342 | |
---|
| 343 | def testAux(params, num_trials, num_observations): |
---|
| 344 | estimator = functools.partial(tester, params, greater) |
---|
| 345 | estimates = bootstrap3(estimator, db, 'test', unusual_case, num_observations, num_trials) |
---|
| 346 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
| 347 | |
---|
| 348 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
| 349 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
| 350 | |
---|
| 351 | false_negatives = 100.0*bad_estimates/num_trials |
---|
| 352 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
| 353 | print("testAux:", num_observations, false_positives, false_negatives, params) |
---|
| 354 | return false_positives,false_negatives |
---|
| 355 | |
---|
| 356 | |
---|
| 357 | if retest: |
---|
| 358 | print("Dropping stored test results...") |
---|
| 359 | db.deleteClassifierResults(classifier, 'test') |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | test_results = [] |
---|
| 363 | lte = math.log(target_error/100.0) |
---|
| 364 | for tr in classifiers[classifier]['train_results']: |
---|
| 365 | db.resetOffsets() |
---|
| 366 | params = json.loads(tr['params']) |
---|
| 367 | num_obs = tr['num_observations'] |
---|
| 368 | |
---|
| 369 | print("initial test") |
---|
| 370 | fp,fn = testAux(params, num_trials, num_obs) |
---|
| 371 | error = (fp+fn)/2.0 |
---|
| 372 | print("walking up") |
---|
| 373 | while (error > target_error) and (num_obs < max_obs): |
---|
| 374 | increase_factor = 1.5 * lte/math.log(error/100.0) # don't ask how I came up with this |
---|
| 375 | #print("increase_factor:", increase_factor) |
---|
| 376 | num_obs = min(int(increase_factor*num_obs), max_obs) |
---|
| 377 | fp,fn = testAux(params, num_trials, num_obs) |
---|
| 378 | error = (fp+fn)/2.0 |
---|
| 379 | |
---|
| 380 | print("walking down") |
---|
| 381 | while (num_obs > 0): |
---|
| 382 | current_best = (num_obs,error,params,fp,fn) |
---|
| 383 | num_obs = int(0.95*num_obs) |
---|
| 384 | fp,fn = testAux(params, num_trials, num_obs) |
---|
| 385 | error = (fp+fn)/2.0 |
---|
| 386 | if error > target_error: |
---|
| 387 | break |
---|
| 388 | |
---|
| 389 | test_results.append(current_best) |
---|
| 390 | |
---|
| 391 | test_results.sort() |
---|
| 392 | best_obs,error,best_params,fp,fn = test_results[0] |
---|
| 393 | |
---|
| 394 | return {'classifier':classifier, |
---|
| 395 | 'trial_type':"test", |
---|
| 396 | 'num_observations':best_obs, |
---|
| 397 | 'num_trials':num_trials, |
---|
| 398 | 'params':best_params, |
---|
| 399 | 'false_positives':fp, |
---|
| 400 | 'false_negatives':fn} |
---|
| 401 | |
---|
| 402 | |
---|
[4] | 403 | start = time.time() |
---|
| 404 | unusual_case,unusual_diff = findUnusualTestCase(db) |
---|
| 405 | greater = (unusual_diff > 0) |
---|
| 406 | print("unusual_case:", unusual_case) |
---|
| 407 | print("unusual_diff:", unusual_diff) |
---|
| 408 | end = time.time() |
---|
| 409 | print(":", end-start) |
---|
| 410 | |
---|
[10] | 411 | for c in sorted(classifiers.keys()): |
---|
| 412 | if classifiers[c]['train'] == None: |
---|
| 413 | continue |
---|
[8] | 414 | start = time.time() |
---|
[9] | 415 | print("Training %s..." % c) |
---|
[10] | 416 | result = trainClassifier(db, unusual_case, greater, c, c in options.retrain) |
---|
[9] | 417 | print("%s result:" % c) |
---|
| 418 | pprint.pprint(result) |
---|
| 419 | print("completed in:", time.time()-start) |
---|
[4] | 420 | |
---|
[10] | 421 | db.clearCache() |
---|
[4] | 422 | |
---|
[10] | 423 | for c in sorted(classifiers.keys()): |
---|
| 424 | start = time.time() |
---|
| 425 | print("Testing %s..." % c) |
---|
| 426 | result = testClassifier(db, unusual_case, greater, c, c in options.retest) |
---|
| 427 | print("%s result:" % c) |
---|
| 428 | pprint.pprint(result) |
---|
| 429 | classifiers[c]['test_error'] = (result['false_positives']+result['false_negatives'])/2.0 |
---|
| 430 | print("completed in:", time.time()-start) |
---|