1 | #!/usr/bin/env python3 |
---|
2 | #-*- mode: Python;-*- |
---|
3 | |
---|
4 | import sys |
---|
5 | import os |
---|
6 | import time |
---|
7 | import random |
---|
8 | import statistics |
---|
9 | import functools |
---|
10 | import argparse |
---|
11 | import pprint |
---|
12 | import json |
---|
13 | |
---|
14 | |
---|
15 | VERSION = "{DEVELOPMENT}" |
---|
16 | if VERSION == "{DEVELOPMENT}": |
---|
17 | script_dir = '.' |
---|
18 | try: |
---|
19 | script_dir = os.path.dirname(os.path.realpath(__file__)) |
---|
20 | except: |
---|
21 | try: |
---|
22 | script_dir = os.path.dirname(os.path.abspath(sys.argv[0])) |
---|
23 | except: |
---|
24 | pass |
---|
25 | sys.path.append("%s/../lib" % script_dir) |
---|
26 | |
---|
27 | from nanownlib import * |
---|
28 | from nanownlib.stats import * |
---|
29 | from nanownlib.parallel import WorkerThreads |
---|
30 | import nanownlib.storage |
---|
31 | |
---|
32 | |
---|
33 | |
---|
34 | parser = argparse.ArgumentParser( |
---|
35 | description="") |
---|
36 | #parser.add_argument('-c', dest='cases', type=str, default='{"short":10000,"long":1010000}', |
---|
37 | # help='JSON representation of echo timing cases. Default: {"short":10000,"long":1010000}') |
---|
38 | parser.add_argument('--retrain', action='append', default=[], help='Force a classifier to be retrained. May be specified multiple times.') |
---|
39 | parser.add_argument('--retest', action='append', default=[], help='Force a classifier to be retested. May be specified multiple times.') |
---|
40 | parser.add_argument('session_data', default=None, |
---|
41 | help='Database file storing session information') |
---|
42 | options = parser.parse_args() |
---|
43 | |
---|
44 | |
---|
45 | def trainBoxTest(db, unusual_case, greater, num_observations): |
---|
46 | db.resetOffsets() |
---|
47 | |
---|
48 | def trainAux(low,high,num_trials): |
---|
49 | estimator = functools.partial(multiBoxTest, {'low':low, 'high':high}, greater) |
---|
50 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
51 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
52 | |
---|
53 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
54 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
55 | |
---|
56 | false_negatives = 100.0*bad_estimates/num_trials |
---|
57 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
58 | return false_positives,false_negatives |
---|
59 | |
---|
60 | #start = time.time() |
---|
61 | wt = WorkerThreads(2, trainAux) |
---|
62 | |
---|
63 | num_trials = 200 |
---|
64 | width = 1.0 |
---|
65 | performance = [] |
---|
66 | for low in range(0,50): |
---|
67 | wt.addJob(low, (low,low+width,num_trials)) |
---|
68 | wt.wait() |
---|
69 | while not wt.resultq.empty(): |
---|
70 | job_id,errors = wt.resultq.get() |
---|
71 | fp,fn = errors |
---|
72 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
73 | performance.sort() |
---|
74 | #pprint.pprint(performance) |
---|
75 | #print(time.time()-start) |
---|
76 | |
---|
77 | num_trials = 200 |
---|
78 | lows = [p[1] for p in performance[0:5]] |
---|
79 | widths = [w/10.0 for w in range(5,65,5)] |
---|
80 | performance = [] |
---|
81 | for width in widths: |
---|
82 | false_positives = [] |
---|
83 | false_negatives = [] |
---|
84 | for low in lows: |
---|
85 | wt.addJob(low,(low,low+width,num_trials)) |
---|
86 | wt.wait() |
---|
87 | while not wt.resultq.empty(): |
---|
88 | job_id,errors = wt.resultq.get() |
---|
89 | fp,fn = errors |
---|
90 | false_negatives.append(fn) |
---|
91 | false_positives.append(fp) |
---|
92 | |
---|
93 | #print(width, false_negatives) |
---|
94 | #print(width, false_positives) |
---|
95 | #performance.append(((statistics.mean(false_positives)+statistics.mean(false_negatives))/2.0, |
---|
96 | # width, statistics.mean(false_negatives), statistics.mean(false_positives))) |
---|
97 | performance.append((abs(statistics.mean(false_positives)-statistics.mean(false_negatives)), |
---|
98 | width, statistics.mean(false_negatives), statistics.mean(false_positives))) |
---|
99 | performance.sort() |
---|
100 | #pprint.pprint(performance) |
---|
101 | good_width = performance[0][1] |
---|
102 | #print("good_width:",good_width) |
---|
103 | |
---|
104 | |
---|
105 | num_trials = 500 |
---|
106 | performance = [] |
---|
107 | for low in lows: |
---|
108 | wt.addJob(low, (low,low+good_width,num_trials)) |
---|
109 | wt.wait() |
---|
110 | while not wt.resultq.empty(): |
---|
111 | job_id,errors = wt.resultq.get() |
---|
112 | fp,fn = errors |
---|
113 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
114 | performance.sort() |
---|
115 | #pprint.pprint(performance) |
---|
116 | best_low = performance[0][1] |
---|
117 | #print("best_low:", best_low) |
---|
118 | |
---|
119 | |
---|
120 | num_trials = 500 |
---|
121 | widths = [good_width+(x/100.0) for x in range(-70,75,5) if good_width+(x/100.0) > 0.0] |
---|
122 | performance = [] |
---|
123 | for width in widths: |
---|
124 | wt.addJob(width, (best_low,best_low+width,num_trials)) |
---|
125 | wt.wait() |
---|
126 | while not wt.resultq.empty(): |
---|
127 | job_id,errors = wt.resultq.get() |
---|
128 | fp,fn = errors |
---|
129 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
130 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
131 | performance.sort() |
---|
132 | #pprint.pprint(performance) |
---|
133 | best_width=performance[0][1] |
---|
134 | #print("best_width:",best_width) |
---|
135 | #print("final_performance:", performance[0][0]) |
---|
136 | |
---|
137 | wt.stop() |
---|
138 | params = json.dumps({"low":best_low,"high":best_low+best_width}) |
---|
139 | return {'trial_type':"train", |
---|
140 | 'num_observations':num_observations, |
---|
141 | 'num_trials':num_trials, |
---|
142 | 'params':params, |
---|
143 | 'false_positives':performance[0][3], |
---|
144 | 'false_negatives':performance[0][2]} |
---|
145 | |
---|
146 | |
---|
147 | def trainSummary(summaryFunc, db, unusual_case, greater, num_observations): |
---|
148 | db.resetOffsets() |
---|
149 | stest = functools.partial(summaryTest, summaryFunc) |
---|
150 | |
---|
151 | def trainAux(distance, threshold, num_trials): |
---|
152 | estimator = functools.partial(stest, {'distance':distance,'threshold':threshold}, greater) |
---|
153 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
154 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
155 | |
---|
156 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
157 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
158 | |
---|
159 | false_negatives = 100.0*bad_estimates/num_trials |
---|
160 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
161 | return false_positives,false_negatives |
---|
162 | |
---|
163 | #determine expected delta based on differences |
---|
164 | mean_diffs = [s['unusual_case']-s['other_cases'] for s in db.subseries('train', unusual_case)] |
---|
165 | threshold = summaryFunc(mean_diffs)/2.0 |
---|
166 | #print("init_threshold:", threshold) |
---|
167 | |
---|
168 | wt = WorkerThreads(2, trainAux) |
---|
169 | |
---|
170 | num_trials = 500 |
---|
171 | performance = [] |
---|
172 | for distance in range(1,50): |
---|
173 | wt.addJob(distance, (distance,threshold,num_trials)) |
---|
174 | wt.wait() |
---|
175 | while not wt.resultq.empty(): |
---|
176 | job_id,errors = wt.resultq.get() |
---|
177 | fp,fn = errors |
---|
178 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
179 | |
---|
180 | performance.sort() |
---|
181 | #pprint.pprint(performance) |
---|
182 | good_distance = performance[0][1] |
---|
183 | #print("good_distance:",good_distance) |
---|
184 | |
---|
185 | |
---|
186 | num_trials = 500 |
---|
187 | performance = [] |
---|
188 | for t in range(80,122,2): |
---|
189 | wt.addJob(threshold*(t/100.0), (good_distance,threshold*(t/100.0),num_trials)) |
---|
190 | wt.wait() |
---|
191 | while not wt.resultq.empty(): |
---|
192 | job_id,errors = wt.resultq.get() |
---|
193 | fp,fn = errors |
---|
194 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
195 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
196 | performance.sort() |
---|
197 | #pprint.pprint(performance) |
---|
198 | good_threshold = performance[0][1] |
---|
199 | #print("good_threshold:", good_threshold) |
---|
200 | |
---|
201 | |
---|
202 | num_trials = 500 |
---|
203 | performance = [] |
---|
204 | for d in [good_distance+s for s in range(-4,5) if good_distance+s > -1]: |
---|
205 | wt.addJob(d, (d,good_threshold,num_trials)) |
---|
206 | wt.wait() |
---|
207 | while not wt.resultq.empty(): |
---|
208 | job_id,errors = wt.resultq.get() |
---|
209 | fp,fn = errors |
---|
210 | performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
211 | performance.sort() |
---|
212 | #pprint.pprint(performance) |
---|
213 | best_distance = performance[0][1] |
---|
214 | #print("best_distance:",best_distance) |
---|
215 | |
---|
216 | |
---|
217 | num_trials = 500 |
---|
218 | performance = [] |
---|
219 | for t in range(90,111): |
---|
220 | wt.addJob(good_threshold*(t/100.0), (best_distance,good_threshold*(t/100.0),num_trials)) |
---|
221 | wt.wait() |
---|
222 | while not wt.resultq.empty(): |
---|
223 | job_id,errors = wt.resultq.get() |
---|
224 | fp,fn = errors |
---|
225 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
226 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
227 | performance.sort() |
---|
228 | #pprint.pprint(performance) |
---|
229 | best_threshold = performance[0][1] |
---|
230 | #print("best_threshold:", best_threshold) |
---|
231 | |
---|
232 | wt.stop() |
---|
233 | params = json.dumps({'distance':best_distance,'threshold':best_threshold}) |
---|
234 | return {'trial_type':"train", |
---|
235 | 'num_observations':num_observations, |
---|
236 | 'num_trials':num_trials, |
---|
237 | 'params':params, |
---|
238 | 'false_positives':performance[0][3], |
---|
239 | 'false_negatives':performance[0][2]} |
---|
240 | |
---|
241 | |
---|
242 | def trainKalman(db, unusual_case, greater, num_observations): |
---|
243 | db.resetOffsets() |
---|
244 | |
---|
245 | def trainAux(params, num_trials): |
---|
246 | estimator = functools.partial(kalmanTest, params, greater) |
---|
247 | estimates = bootstrap3(estimator, db, 'train', unusual_case, num_observations, num_trials) |
---|
248 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
249 | |
---|
250 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
251 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
252 | |
---|
253 | false_negatives = 100.0*bad_estimates/num_trials |
---|
254 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
255 | return false_positives,false_negatives |
---|
256 | |
---|
257 | mean_diffs = [s['unusual_case']-s['other_cases'] for s in db.subseries('train', unusual_case)] |
---|
258 | good_threshold = kfilter({},mean_diffs)['est'][-1]/2.0 |
---|
259 | |
---|
260 | wt = WorkerThreads(2, trainAux) |
---|
261 | num_trials = 200 |
---|
262 | performance = [] |
---|
263 | for t in range(90,111): |
---|
264 | params = {'threshold':good_threshold*(t/100.0)} |
---|
265 | wt.addJob(good_threshold*(t/100.0), (params,num_trials)) |
---|
266 | wt.wait() |
---|
267 | while not wt.resultq.empty(): |
---|
268 | job_id,errors = wt.resultq.get() |
---|
269 | fp,fn = errors |
---|
270 | #performance.append(((fp+fn)/2.0, job_id, fn, fp)) |
---|
271 | performance.append((abs(fp-fn), job_id, fn, fp)) |
---|
272 | performance.sort() |
---|
273 | #pprint.pprint(performance) |
---|
274 | best_threshold = performance[0][1] |
---|
275 | #print("best_threshold:", best_threshold) |
---|
276 | params = {'threshold':best_threshold} |
---|
277 | |
---|
278 | wt.stop() |
---|
279 | |
---|
280 | return {'trial_type':"train", |
---|
281 | 'num_observations':num_observations, |
---|
282 | 'num_trials':num_trials, |
---|
283 | 'params':json.dumps(params), |
---|
284 | 'false_positives':performance[0][3], |
---|
285 | 'false_negatives':performance[0][2]} |
---|
286 | |
---|
287 | |
---|
288 | #determine expected delta based on differences |
---|
289 | classifiers = {'boxtest':{'train':trainBoxTest, 'test':multiBoxTest, 'train_results':[]}, |
---|
290 | 'midsummary':{'train':functools.partial(trainSummary, midsummary), 'test':midsummaryTest, 'train_results':[]}, |
---|
291 | #'ubersummary':{'train':functools.partial(trainSummary, ubersummary), 'test':ubersummaryTest, 'train_results':[]}, |
---|
292 | 'quadsummary':{'train':functools.partial(trainSummary, quadsummary), 'test':quadsummaryTest, 'train_results':[]}, |
---|
293 | 'kalman':{'train':trainKalman, 'test':kalmanTest, 'train_results':[]}, |
---|
294 | #'_trimean':{'train':None, 'test':trimeanTest, 'train_results':[]}, |
---|
295 | } |
---|
296 | |
---|
297 | |
---|
298 | db = nanownlib.storage.db(options.session_data) |
---|
299 | |
---|
300 | import cProfile |
---|
301 | |
---|
302 | def trainClassifier(db, unusual_case, greater, classifier, retrain=False): |
---|
303 | if retrain: |
---|
304 | print("Dropping stored training results...") |
---|
305 | db.deleteClassifierResults(classifier, 'train') |
---|
306 | |
---|
307 | trainer = classifiers[classifier]['train'] |
---|
308 | threshold = 5.0 # in percent |
---|
309 | num_obs = 1000 |
---|
310 | max_obs = int(db.populationSize('train')/5) |
---|
311 | result = None |
---|
312 | while num_obs < max_obs: |
---|
313 | num_obs = min(int(num_obs*1.5), max_obs) |
---|
314 | result = db.fetchClassifierResult(classifier, 'train', num_obs) |
---|
315 | if result != None: |
---|
316 | train_time = "(stored)" |
---|
317 | else: |
---|
318 | start = time.time() |
---|
319 | result = trainer(db,unusual_case,greater,num_obs) |
---|
320 | result['classifier'] = classifier |
---|
321 | train_time = "%f" % (time.time()-start) |
---|
322 | |
---|
323 | error = statistics.mean([result['false_positives'],result['false_negatives']]) |
---|
324 | print("number of observations: %d | error: %f | false_positives: %f | false_negatives: %f | train time: %s | params: %s" |
---|
325 | % (num_obs, error, result['false_positives'],result['false_negatives'], train_time, result['params'])) |
---|
326 | db.addClassifierResults(result) |
---|
327 | classifiers[classifier]['train_results'].append(result) |
---|
328 | |
---|
329 | if error < threshold: |
---|
330 | break |
---|
331 | |
---|
332 | return result |
---|
333 | |
---|
334 | |
---|
335 | |
---|
336 | def testClassifier(db, unusual_case, greater, classifier, retest=False): |
---|
337 | target_error = 5.0 # in percent |
---|
338 | num_trials = 1000 |
---|
339 | max_obs = int(db.populationSize('test')/5) |
---|
340 | |
---|
341 | tester = classifiers[classifier]['test'] |
---|
342 | |
---|
343 | def testAux(params, num_trials, num_observations): |
---|
344 | estimator = functools.partial(tester, params, greater) |
---|
345 | estimates = bootstrap3(estimator, db, 'test', unusual_case, num_observations, num_trials) |
---|
346 | null_estimates = bootstrap3(estimator, db, 'train_null', unusual_case, num_observations, num_trials) |
---|
347 | |
---|
348 | bad_estimates = len([e for e in estimates if e != 1]) |
---|
349 | bad_null_estimates = len([e for e in null_estimates if e != 0]) |
---|
350 | |
---|
351 | false_negatives = 100.0*bad_estimates/num_trials |
---|
352 | false_positives = 100.0*bad_null_estimates/num_trials |
---|
353 | print("testAux:", num_observations, false_positives, false_negatives, params) |
---|
354 | return false_positives,false_negatives |
---|
355 | |
---|
356 | |
---|
357 | if retest: |
---|
358 | print("Dropping stored test results...") |
---|
359 | db.deleteClassifierResults(classifier, 'test') |
---|
360 | |
---|
361 | |
---|
362 | test_results = [] |
---|
363 | lte = math.log(target_error/100.0) |
---|
364 | for tr in classifiers[classifier]['train_results']: |
---|
365 | db.resetOffsets() |
---|
366 | params = json.loads(tr['params']) |
---|
367 | num_obs = tr['num_observations'] |
---|
368 | |
---|
369 | print("initial test") |
---|
370 | fp,fn = testAux(params, num_trials, num_obs) |
---|
371 | error = (fp+fn)/2.0 |
---|
372 | print("walking up") |
---|
373 | while (error > target_error) and (num_obs < max_obs): |
---|
374 | increase_factor = 1.5 * lte/math.log(error/100.0) # don't ask how I came up with this |
---|
375 | #print("increase_factor:", increase_factor) |
---|
376 | num_obs = min(int(increase_factor*num_obs), max_obs) |
---|
377 | fp,fn = testAux(params, num_trials, num_obs) |
---|
378 | error = (fp+fn)/2.0 |
---|
379 | |
---|
380 | print("walking down") |
---|
381 | while (num_obs > 0): |
---|
382 | current_best = (num_obs,error,params,fp,fn) |
---|
383 | num_obs = int(0.95*num_obs) |
---|
384 | fp,fn = testAux(params, num_trials, num_obs) |
---|
385 | error = (fp+fn)/2.0 |
---|
386 | if error > target_error: |
---|
387 | break |
---|
388 | |
---|
389 | test_results.append(current_best) |
---|
390 | |
---|
391 | test_results.sort() |
---|
392 | best_obs,error,best_params,fp,fn = test_results[0] |
---|
393 | |
---|
394 | return {'classifier':classifier, |
---|
395 | 'trial_type':"test", |
---|
396 | 'num_observations':best_obs, |
---|
397 | 'num_trials':num_trials, |
---|
398 | 'params':best_params, |
---|
399 | 'false_positives':fp, |
---|
400 | 'false_negatives':fn} |
---|
401 | |
---|
402 | |
---|
403 | start = time.time() |
---|
404 | unusual_case,unusual_diff = findUnusualTestCase(db) |
---|
405 | greater = (unusual_diff > 0) |
---|
406 | print("unusual_case:", unusual_case) |
---|
407 | print("unusual_diff:", unusual_diff) |
---|
408 | end = time.time() |
---|
409 | print(":", end-start) |
---|
410 | |
---|
411 | for c in sorted(classifiers.keys()): |
---|
412 | if classifiers[c]['train'] == None: |
---|
413 | continue |
---|
414 | start = time.time() |
---|
415 | print("Training %s..." % c) |
---|
416 | result = trainClassifier(db, unusual_case, greater, c, c in options.retrain) |
---|
417 | print("%s result:" % c) |
---|
418 | pprint.pprint(result) |
---|
419 | print("completed in:", time.time()-start) |
---|
420 | |
---|
421 | db.clearCache() |
---|
422 | |
---|
423 | for c in sorted(classifiers.keys()): |
---|
424 | start = time.time() |
---|
425 | print("Testing %s..." % c) |
---|
426 | result = testClassifier(db, unusual_case, greater, c, c in options.retest) |
---|
427 | print("%s result:" % c) |
---|
428 | pprint.pprint(result) |
---|
429 | classifiers[c]['test_error'] = (result['false_positives']+result['false_negatives'])/2.0 |
---|
430 | print("completed in:", time.time()-start) |
---|