source: trunk/lib/regfi.c @ 133

Last change on this file since 133 was 133, checked in by tim, 15 years ago

minor changes to winsec library

fixed major bug with data_in_offset values

  • Property svn:keywords set to Id
File size: 51.2 KB
Line 
1/*
2 * Branched from Samba project Subversion repository, version #7470:
3 *   http://viewcvs.samba.org/cgi-bin/viewcvs.cgi/trunk/source/registry/regfio.c?rev=7470&view=auto
4 *
5 * Unix SMB/CIFS implementation.
6 * Windows NT registry parsing library
7 *
8 * Copyright (C) 2005-2009 Timothy D. Morgan
9 * Copyright (C) 2005 Gerald (Jerry) Carter
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 3 of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
23 *
24 * $Id: regfi.c 133 2009-01-12 17:07:58Z tim $
25 */
26
27#include "../include/regfi.h"
28
29
30/* Registry types mapping */
31const unsigned int regfi_num_reg_types = 12;
32static const char* regfi_type_names[] =
33  {"NONE", "SZ", "EXPAND_SZ", "BINARY", "DWORD", "DWORD_BE", "LINK",
34   "MULTI_SZ", "RSRC_LIST", "RSRC_DESC", "RSRC_REQ_LIST", "QWORD"};
35
36
37/* Returns NULL on error */
38const char* regfi_type_val2str(unsigned int val)
39{
40  if(val == REG_KEY)
41    return "KEY";
42 
43  if(val >= regfi_num_reg_types)
44    return NULL;
45 
46  return regfi_type_names[val];
47}
48
49
50/* Returns -1 on error */
51int regfi_type_str2val(const char* str)
52{
53  int i;
54
55  if(strcmp("KEY", str) == 0)
56    return REG_KEY;
57
58  for(i=0; i < regfi_num_reg_types; i++)
59    if (strcmp(regfi_type_names[i], str) == 0) 
60      return i;
61
62  if(strcmp("DWORD_LE", str) == 0)
63    return REG_DWORD_LE;
64
65  return -1;
66}
67
68
69/* Security descriptor parsing functions  */
70
71const char* regfi_ace_type2str(uint8 type)
72{
73  static const char* map[7] 
74    = {"ALLOW", "DENY", "AUDIT", "ALARM", 
75       "ALLOW CPD", "OBJ ALLOW", "OBJ DENY"};
76  if(type < 7)
77    return map[type];
78  else
79    /* XXX: would be nice to return the unknown integer value. 
80     *      However, as it is a const string, it can't be free()ed later on,
81     *      so that would need to change.
82     */
83    return "UNKNOWN";
84}
85
86
87/* XXX: need a better reference on the meaning of each flag. */
88/* For more info, see:
89 *   http://msdn2.microsoft.com/en-us/library/aa772242.aspx
90 */
91char* regfi_ace_flags2str(uint8 flags)
92{
93  static const char* flag_map[32] = 
94    { "OI", /* Object Inherit */
95      "CI", /* Container Inherit */
96      "NP", /* Non-Propagate */
97      "IO", /* Inherit Only */
98      "IA", /* Inherited ACE */
99      NULL,
100      NULL,
101      NULL,
102    };
103
104  char* ret_val = malloc(35*sizeof(char));
105  char* fo = ret_val;
106  uint32 i;
107  uint8 f;
108
109  if(ret_val == NULL)
110    return NULL;
111
112  fo[0] = '\0';
113  if (!flags)
114    return ret_val;
115
116  for(i=0; i < 8; i++)
117  {
118    f = (1<<i);
119    if((flags & f) && (flag_map[i] != NULL))
120    {
121      strcpy(fo, flag_map[i]);
122      fo += strlen(flag_map[i]);
123      *(fo++) = ' ';
124      flags ^= f;
125    }
126  }
127 
128  /* Any remaining unknown flags are added at the end in hex. */
129  if(flags != 0)
130    sprintf(fo, "0x%.2X ", flags);
131
132  /* Chop off the last space if we've written anything to ret_val */
133  if(fo != ret_val)
134    fo[-1] = '\0';
135
136  /* XXX: what was this old VI flag for??
137     XXX: Is this check right?  0xF == 1|2|4|8, which makes it redundant...
138  if (flags == 0xF) {
139    if (some) strcat(flg_output, " ");
140    some = 1;
141    strcat(flg_output, "VI");
142  }
143  */
144
145  return ret_val;
146}
147
148
149char* regfi_ace_perms2str(uint32 perms)
150{
151  uint32 i, p;
152  /* This is more than is needed by a fair margin. */
153  char* ret_val = malloc(350*sizeof(char));
154  char* r = ret_val;
155
156  /* Each represents one of 32 permissions bits.  NULL is for undefined/reserved bits.
157   * For more information, see:
158   *   http://msdn2.microsoft.com/en-gb/library/aa374892.aspx
159   *   http://msdn2.microsoft.com/en-gb/library/ms724878.aspx
160   */
161  static const char* perm_map[32] = 
162    {/* object-specific permissions (registry keys, in this case) */
163      "QRY_VAL",       /* KEY_QUERY_VALUE */
164      "SET_VAL",       /* KEY_SET_VALUE */
165      "CREATE_KEY",    /* KEY_CREATE_SUB_KEY */
166      "ENUM_KEYS",     /* KEY_ENUMERATE_SUB_KEYS */
167      "NOTIFY",        /* KEY_NOTIFY */
168      "CREATE_LNK",    /* KEY_CREATE_LINK - Reserved for system use. */
169      NULL,
170      NULL,
171      "WOW64_64",      /* KEY_WOW64_64KEY */
172      "WOW64_32",      /* KEY_WOW64_32KEY */
173      NULL,
174      NULL,
175      NULL,
176      NULL,
177      NULL,
178      NULL,
179      /* standard access rights */
180      "DELETE",        /* DELETE */
181      "R_CONT",        /* READ_CONTROL */
182      "W_DAC",         /* WRITE_DAC */
183      "W_OWNER",       /* WRITE_OWNER */
184      "SYNC",          /* SYNCHRONIZE - Shouldn't be set in registries */
185      NULL,
186      NULL,
187      NULL,
188      /* other generic */
189      "SYS_SEC",       /* ACCESS_SYSTEM_SECURITY */
190      "MAX_ALLWD",     /* MAXIMUM_ALLOWED */
191      NULL,
192      NULL,
193      "GEN_A",         /* GENERIC_ALL */
194      "GEN_X",         /* GENERIC_EXECUTE */
195      "GEN_W",         /* GENERIC_WRITE */
196      "GEN_R",         /* GENERIC_READ */
197    };
198
199
200  if(ret_val == NULL)
201    return NULL;
202
203  r[0] = '\0';
204  for(i=0; i < 32; i++)
205  {
206    p = (1<<i);
207    if((perms & p) && (perm_map[i] != NULL))
208    {
209      strcpy(r, perm_map[i]);
210      r += strlen(perm_map[i]);
211      *(r++) = ' ';
212      perms ^= p;
213    }
214  }
215 
216  /* Any remaining unknown permission bits are added at the end in hex. */
217  if(perms != 0)
218    sprintf(r, "0x%.8X ", perms);
219
220  /* Chop off the last space if we've written anything to ret_val */
221  if(r != ret_val)
222    r[-1] = '\0';
223
224  return ret_val;
225}
226
227
228char* regfi_sid2str(DOM_SID* sid)
229{
230  uint32 i, size = MAXSUBAUTHS*11 + 24;
231  uint32 left = size;
232  uint8 comps = sid->num_auths;
233  char* ret_val = malloc(size);
234 
235  if(ret_val == NULL)
236    return NULL;
237
238  if(comps > MAXSUBAUTHS)
239    comps = MAXSUBAUTHS;
240
241  left -= sprintf(ret_val, "S-%u-%u", sid->sid_rev_num, sid->id_auth[5]);
242
243  for (i = 0; i < comps; i++) 
244    left -= snprintf(ret_val+(size-left), left, "-%u", sid->sub_auths[i]);
245
246  return ret_val;
247}
248
249
250char* regfi_get_acl(SEC_ACL* acl)
251{
252  uint32 i, extra, size = 0;
253  const char* type_str;
254  char* flags_str;
255  char* perms_str;
256  char* sid_str;
257  char* ace_delim = "";
258  char* ret_val = NULL;
259  char* tmp_val = NULL;
260  bool failed = false;
261  char field_delim = ':';
262
263  for (i = 0; i < acl->num_aces && !failed; i++)
264  {
265    sid_str = regfi_sid2str(&acl->ace[i].trustee);
266    type_str = regfi_ace_type2str(acl->ace[i].type);
267    perms_str = regfi_ace_perms2str(acl->ace[i].info.mask);
268    flags_str = regfi_ace_flags2str(acl->ace[i].flags);
269   
270    if(flags_str != NULL && perms_str != NULL 
271       && type_str != NULL && sid_str != NULL)
272    {
273      /* XXX: this is slow */
274      extra = strlen(sid_str) + strlen(type_str) 
275        + strlen(perms_str) + strlen(flags_str)+5;
276      tmp_val = realloc(ret_val, size+extra);
277
278      if(tmp_val == NULL)
279      {
280        free(ret_val);
281        failed = true;
282      }
283      else
284      {
285        ret_val = tmp_val;
286        size += snprintf(ret_val+size, extra, "%s%s%c%s%c%s%c%s",
287                         ace_delim,sid_str,
288                         field_delim,type_str,
289                         field_delim,perms_str,
290                         field_delim,flags_str);
291        ace_delim = "|";
292      }
293    }
294    else
295      failed = true;
296
297    if(sid_str != NULL)
298      free(sid_str);
299    if(sid_str != NULL)
300      free(perms_str);
301    if(sid_str != NULL)
302      free(flags_str);
303  }
304
305  return ret_val;
306}
307
308
309char* regfi_get_sacl(SEC_DESC *sec_desc)
310{
311  if (sec_desc->sacl)
312    return regfi_get_acl(sec_desc->sacl);
313  else
314    return NULL;
315}
316
317
318char* regfi_get_dacl(SEC_DESC *sec_desc)
319{
320  if (sec_desc->dacl)
321    return regfi_get_acl(sec_desc->dacl);
322  else
323    return NULL;
324}
325
326
327char* regfi_get_owner(SEC_DESC *sec_desc)
328{
329  return regfi_sid2str(sec_desc->owner_sid);
330}
331
332
333char* regfi_get_group(SEC_DESC *sec_desc)
334{
335  return regfi_sid2str(sec_desc->grp_sid);
336}
337
338
339/*****************************************************************************
340 * This function is just like read(2), except that it continues to
341 * re-try reading from the file descriptor if EINTR or EAGAIN is received. 
342 * regfi_read will attempt to read length bytes from fd and write them to buf.
343 *
344 * On success, 0 is returned.  Upon failure, an errno code is returned.
345 *
346 * The number of bytes successfully read is returned through the length
347 * parameter by reference.  If both the return value and length parameter are
348 * returned as 0, then EOF was encountered immediately
349 *****************************************************************************/
350uint32 regfi_read(int fd, uint8* buf, uint32* length)
351{
352  uint32 rsize = 0;
353  uint32 rret = 0;
354
355  do
356  {
357    rret = read(fd, buf + rsize, *length - rsize);
358    if(rret > 0)
359      rsize += rret;
360  }while(*length - rsize > 0 
361         && (rret > 0 || (rret == -1 && (errno == EAGAIN || errno == EINTR))));
362 
363  *length = rsize;
364  if (rret == -1 && errno != EINTR && errno != EAGAIN)
365    return errno;
366
367  return 0;
368}
369
370
371/*****************************************************************************
372 *
373 *****************************************************************************/
374bool regfi_parse_cell(int fd, uint32 offset, uint8* hdr, uint32 hdr_len,
375                      uint32* cell_length, bool* unalloc)
376{
377  uint32 length;
378  int32 raw_length;
379  uint8 tmp[4];
380
381  if(lseek(fd, offset, SEEK_SET) == -1)
382    return false;
383
384  length = 4;
385  if((regfi_read(fd, tmp, &length) != 0) || length != 4)
386    return false;
387  raw_length = IVALS(tmp, 0);
388
389  if(raw_length < 0)
390  {
391    (*cell_length) = raw_length*(-1);
392    (*unalloc) = false;
393  }
394  else
395  {
396    (*cell_length) = raw_length;
397    (*unalloc) = true;
398  }
399
400  if(*cell_length - 4 < hdr_len)
401    return false;
402
403  if(hdr_len > 0)
404  {
405    length = hdr_len;
406    if((regfi_read(fd, hdr, &length) != 0) || length != hdr_len)
407      return false;
408  }
409
410  return true;
411}
412
413
414/*******************************************************************
415 * Given an offset and an hbin, is the offset within that hbin?
416 * The offset is a virtual file offset.
417 *******************************************************************/
418static bool regfi_offset_in_hbin(REGF_HBIN* hbin, uint32 offset)
419{
420  if(!hbin)
421    return false;
422
423  if((offset > hbin->first_hbin_off) 
424     && (offset < (hbin->first_hbin_off + hbin->block_size)))
425    return true;
426               
427  return false;
428}
429
430
431
432/*******************************************************************
433 * Given a virtual offset, and receive the correpsonding HBIN
434 * block for it.  NULL if one doesn't exist.
435 *******************************************************************/
436REGF_HBIN* regfi_lookup_hbin(REGF_FILE* file, uint32 offset)
437{
438  return (REGF_HBIN*)range_list_find_data(file->hbins, offset+REGF_BLOCKSIZE);
439}
440
441
442/*******************************************************************
443 *******************************************************************/
444REGF_SUBKEY_LIST* regfi_merge_subkeylists(uint16 num_lists, 
445                                          REGF_SUBKEY_LIST** lists,
446                                          bool strict)
447{
448  uint32 i,j,k;
449  REGF_SUBKEY_LIST* ret_val = (REGF_SUBKEY_LIST*)zalloc(sizeof(REGF_SUBKEY_LIST));
450  if(ret_val == NULL || lists == NULL)
451    return NULL;
452 
453  /* Obtain total number of elements */
454  ret_val->num_keys = 0;
455  for(i=0; i < num_lists; i++)
456  {
457    if(lists[i] == NULL)
458    {
459      ret_val->num_keys = 0;
460      break;
461    }
462    ret_val->num_keys += lists[i]->num_keys;
463  }
464 
465  if(ret_val->num_keys > 0)
466  {
467    ret_val->elements = 
468      (REGF_SUBKEY_LIST_ELEM*)zalloc(sizeof(REGF_SUBKEY_LIST_ELEM)
469                                     * ret_val->num_keys);
470    k=0;
471    if(ret_val->elements != NULL)
472    {
473      for(i=0; i<num_lists; i++)
474        for(j=0; j<lists[i]->num_keys; j++)
475        {
476          ret_val->elements[k].hash=lists[i]->elements[j].hash;
477          ret_val->elements[k++].nk_off=lists[i]->elements[j].nk_off;
478        }
479    }
480  }
481 
482  for(i=0; i < num_lists; i++)
483    regfi_subkeylist_free(lists[i]);
484  free(lists);
485
486  return ret_val;
487}
488
489
490
491/*******************************************************************
492 *******************************************************************/
493REGF_SUBKEY_LIST* regfi_load_subkeylist(REGF_FILE* file, uint32 offset, 
494                                        uint32 num_keys, uint32 max_size, 
495                                        bool strict)
496{
497  REGF_SUBKEY_LIST* ret_val;
498  REGF_SUBKEY_LIST** sublists;
499  REGF_HBIN* sublist_hbin;
500  uint32 i, cell_length, length, num_sublists, off, max_length;
501  uint8* hashes;
502  uint8 buf[REGFI_SUBKEY_LIST_MIN_LEN];
503  bool unalloc;
504
505  if(!regfi_parse_cell(file->fd, offset, buf, REGFI_SUBKEY_LIST_MIN_LEN, 
506                       &cell_length, &unalloc))
507    return NULL;
508
509  if(cell_length > max_size)
510  {
511    if(strict)
512      return NULL;
513    cell_length = max_size & 0xFFFFFFF8;
514  }
515
516  if(buf[0] == 'r' && buf[1] == 'i')
517  {
518    num_sublists = SVAL(buf, 0x2);
519
520    /* XXX: check cell_length vs num_sublists vs max_length */
521    length = num_sublists*sizeof(uint32);
522    hashes = (uint8*)zalloc(length);
523    if(hashes == NULL)
524      return NULL;
525
526    if(regfi_read(file->fd, hashes, &length) != 0
527       || length != num_sublists*sizeof(uint32))
528    { 
529      free(hashes);
530      return NULL; 
531    }
532
533    sublists = (REGF_SUBKEY_LIST**)zalloc(num_sublists*sizeof(REGF_SUBKEY_LIST*));   
534    for(i=0; i < num_sublists; i++)
535    {
536      off = IVAL(hashes, i*4)+REGF_BLOCKSIZE;
537      sublist_hbin = regfi_lookup_hbin(file, IVAL(hashes, i*4));
538      max_length = sublist_hbin->block_size + sublist_hbin->file_off - off;
539
540      /* XXX: Need to add a recursion depth limit of some kind. */
541      sublists[i] = regfi_load_subkeylist(file, off, 0, max_length, strict);
542    }
543   
544    return regfi_merge_subkeylists(num_sublists, sublists, strict);
545  }
546
547  ret_val = (REGF_SUBKEY_LIST*)zalloc(sizeof(REGF_SUBKEY_LIST));
548  if(ret_val == NULL)
549    return NULL;
550
551  ret_val->offset = offset;
552  ret_val->cell_size = cell_length;
553
554  if((buf[0] != 'l' || buf[1] != 'f') && (buf[0] != 'l' || buf[1] != 'h'))
555  {
556    /*printf("DEBUG: lf->header=%c%c\n", buf[0], buf[1]);*/
557    free(ret_val);
558    return NULL;
559  }
560
561  ret_val->magic[0] = buf[0];
562  ret_val->magic[1] = buf[1];
563
564  ret_val->num_keys = SVAL(buf, 0x2);
565  if(num_keys != ret_val->num_keys)
566  {
567    /*  Not sure which should be authoritative, the number from the
568     *  NK record, or the number in the subkey list.  Go with the larger
569     *  of the two to ensure all keys are found, since in 'ri' records,
570     *  there is no authoritative parent count for a leaf subkey list. 
571     *  Note the length checks on the cell later ensure that there won't
572     *  be any critical errors.
573     */
574    if(num_keys < ret_val->num_keys)
575      num_keys = ret_val->num_keys;
576    else
577      ret_val->num_keys = num_keys;
578  }
579
580  if(cell_length - REGFI_SUBKEY_LIST_MIN_LEN - sizeof(uint32) 
581     < ret_val->num_keys*sizeof(REGF_SUBKEY_LIST_ELEM))
582    return NULL;
583
584  length = sizeof(REGF_SUBKEY_LIST_ELEM)*ret_val->num_keys;
585  ret_val->elements = (REGF_SUBKEY_LIST_ELEM*)zalloc(length);
586  if(ret_val->elements == NULL)
587  {
588    free(ret_val);
589    return NULL;
590  }
591
592  hashes = (uint8*)zalloc(length);
593  if(hashes == NULL)
594  {
595    free(ret_val->elements);
596    free(ret_val);
597    return NULL;
598  }
599
600  if(regfi_read(file->fd, hashes, &length) != 0
601     || length != sizeof(REGF_SUBKEY_LIST_ELEM)*ret_val->num_keys)
602  {
603    free(ret_val->elements);
604    free(ret_val);
605    return NULL;
606  }
607
608  for (i=0; i < ret_val->num_keys; i++)
609  {
610    ret_val->elements[i].nk_off = IVAL(hashes, i*sizeof(REGF_SUBKEY_LIST_ELEM));
611    ret_val->elements[i].hash = IVAL(hashes, i*sizeof(REGF_SUBKEY_LIST_ELEM)+4);
612  }
613  free(hashes);
614
615  return ret_val;
616}
617
618
619
620/*******************************************************************
621 *******************************************************************/
622REGF_SK_REC* regfi_parse_sk(REGF_FILE* file, uint32 offset, uint32 max_size, bool strict)
623{
624  REGF_SK_REC* ret_val;
625  uint32 cell_length, length;
626  prs_struct ps;
627  uint8 sk_header[REGFI_SK_MIN_LENGTH];
628  bool unalloc = false;
629
630
631  if(!regfi_parse_cell(file->fd, offset, sk_header, REGFI_SK_MIN_LENGTH,
632                       &cell_length, &unalloc))
633    return NULL;
634   
635  if(sk_header[0] != 's' || sk_header[1] != 'k')
636    return NULL;
637 
638  ret_val = (REGF_SK_REC*)zalloc(sizeof(REGF_SK_REC));
639  if(ret_val == NULL)
640    return NULL;
641
642  ret_val->offset = offset;
643  /* XXX: Is there a way to be more conservative (shorter) with
644   *      cell length when cell is unallocated?
645   */
646  ret_val->cell_size = cell_length;
647
648  if(ret_val->cell_size > max_size)
649    ret_val->cell_size = max_size & 0xFFFFFFF8;
650  if((ret_val->cell_size < REGFI_SK_MIN_LENGTH) 
651     || (strict && ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8)))
652  {
653    free(ret_val);
654    return NULL;
655  }
656
657  ret_val->magic[0] = sk_header[0];
658  ret_val->magic[1] = sk_header[1];
659
660  /* XXX: Can additional validation be added here? */
661  ret_val->unknown_tag = SVAL(sk_header, 0x2);
662  ret_val->prev_sk_off = IVAL(sk_header, 0x4);
663  ret_val->next_sk_off = IVAL(sk_header, 0x8);
664  ret_val->ref_count = IVAL(sk_header, 0xC);
665  ret_val->desc_size = IVAL(sk_header, 0x10);
666
667  if(ret_val->desc_size + REGFI_SK_MIN_LENGTH > ret_val->cell_size)
668  {
669    free(ret_val);
670    return NULL;
671  }
672
673  /* XXX: need to get rid of this, but currently the security descriptor
674   * code depends on the ps structure.
675   */
676  if(!prs_init(&ps, ret_val->desc_size, NULL, UNMARSHALL))
677  {
678    free(ret_val);
679    return NULL;
680  }
681
682  length = ret_val->desc_size;
683  if(regfi_read(file->fd, (uint8*)ps.data_p, &length) != 0 
684     || length != ret_val->desc_size)
685  {
686    free(ret_val);
687    return NULL;
688  }
689
690  /* XXX: call should look more like: */
691  /*if (!(ret_val->sec_desc = winsec_parse_desc(sec_desc_buf, ret_val->desc_size)))*/
692  if (!sec_io_desc("sec_desc", &ret_val->sec_desc, &ps, 0))
693  {
694    free(ret_val);
695    return NULL;
696  }
697
698  free(ps.data_p);
699
700  return ret_val;
701}
702
703
704uint32* regfi_parse_valuelist(REGF_FILE* file, uint32 offset, 
705                              uint32 num_values, bool strict)
706{
707  uint32* ret_val;
708  uint32 i, cell_length, length, read_len;
709  bool unalloc;
710
711  if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc))
712    return NULL;
713
714  if(cell_length != (cell_length & 0xFFFFFFF8))
715  {
716    if(strict)
717      return NULL;
718    cell_length = cell_length & 0xFFFFFFF8;
719  }
720  if((num_values * sizeof(uint32)) > cell_length-sizeof(uint32))
721    return NULL;
722
723  read_len = num_values*sizeof(uint32);
724  ret_val = (uint32*)malloc(read_len);
725  if(ret_val == NULL)
726    return NULL;
727
728  length = read_len;
729  if((regfi_read(file->fd, (uint8*)ret_val, &length) != 0) || length != read_len)
730  {
731    free(ret_val);
732    return NULL;
733  }
734 
735  for(i=0; i < num_values; i++)
736  {
737    /* Fix endianness */
738    ret_val[i] = IVAL(&ret_val[i], 0);
739
740    /* Validate the first num_values values to ensure they make sense */
741    if(strict)
742    {
743      if((ret_val[i] + REGF_BLOCKSIZE > file->file_length)
744         || ((ret_val[i] & 0xFFFFFFF8) != ret_val[i]))
745      {
746        free(ret_val);
747        return NULL;
748      }
749    }
750  }
751
752  return ret_val;
753}
754
755
756
757/******************************************************************************
758 * If !strict, the list may contain NULLs, VK records may point to NULL.
759 ******************************************************************************/
760REGF_VK_REC** regfi_load_valuelist(REGF_FILE* file, uint32 offset, 
761                                   uint32 num_values, uint32 max_size, 
762                                   bool strict)
763{
764  REGF_VK_REC** ret_val;
765  REGF_HBIN* hbin;
766  uint32 i, vk_offset, vk_max_length, usable_num_values;
767  uint32* voffsets;
768
769  if((num_values+1) * sizeof(uint32) > max_size)
770  {
771    if(strict)
772      return NULL;
773    usable_num_values = max_size/sizeof(uint32) - sizeof(uint32);
774  }
775  else
776    usable_num_values = num_values;
777
778  voffsets = regfi_parse_valuelist(file, offset, usable_num_values, strict);
779  if(voffsets == NULL)
780    return NULL;
781
782  ret_val = (REGF_VK_REC**)zalloc(sizeof(REGF_VK_REC*) * num_values);
783  if(ret_val == NULL)
784  {
785    free(voffsets);
786    return NULL;
787  }
788 
789  for(i=0; i < usable_num_values; i++)
790  {
791    hbin = regfi_lookup_hbin(file, voffsets[i]);
792    if(!hbin)
793    {
794      free(voffsets);
795      free(ret_val);
796      return NULL;
797    }
798
799    vk_offset =  voffsets[i] + REGF_BLOCKSIZE;
800    vk_max_length = hbin->block_size + hbin->file_off - vk_offset;
801    ret_val[i] = regfi_parse_vk(file, vk_offset, vk_max_length, strict);
802    if(ret_val[i] == NULL)
803    { /* If we're being strict, throw out the whole list.
804       * Otherwise, let it be NULL.
805       */
806      if(strict)
807      {
808        free(voffsets);
809        free(ret_val);
810        return NULL;
811      }
812    }
813  }
814
815  free(voffsets);
816  return ret_val;
817}
818
819
820
821/*******************************************************************
822 * XXX: Need to add full key caching using a
823 *      custom cache structure.
824 *******************************************************************/
825REGF_NK_REC* regfi_load_key(REGF_FILE* file, uint32 offset, bool strict)
826{
827  REGF_HBIN* hbin;
828  REGF_HBIN* sub_hbin;
829  REGF_NK_REC* nk;
830  uint32 max_length, off;
831
832  hbin = regfi_lookup_hbin(file, offset-REGF_BLOCKSIZE);
833  if (hbin == NULL) 
834    return NULL;
835
836  /* get the initial nk record */
837  max_length = hbin->block_size + hbin->file_off - offset;
838  if ((nk = regfi_parse_nk(file, offset, max_length, true)) == NULL)
839    return NULL;
840
841  /* fill in values */
842  if(nk->num_values && (nk->values_off!=REGF_OFFSET_NONE)) 
843  {
844    sub_hbin = hbin;
845    if(!regfi_offset_in_hbin(hbin, nk->values_off)) 
846      sub_hbin = regfi_lookup_hbin(file, nk->values_off);
847   
848    if(sub_hbin == NULL)
849    {
850      if(strict)
851      {
852        free(nk);
853        return NULL;
854      }
855      else
856        nk->values = NULL;
857
858    }
859    else
860    {
861      off = nk->values_off + REGF_BLOCKSIZE;
862      max_length = sub_hbin->block_size + sub_hbin->file_off - off;
863      nk->values = regfi_load_valuelist(file, off, nk->num_values, max_length, 
864                                        true);
865      if(strict && nk->values == NULL)
866      {
867        free(nk);
868        return NULL;
869      }
870
871    }
872  }
873
874  /* now get subkeys */
875  if(nk->num_subkeys && (nk->subkeys_off != REGF_OFFSET_NONE)) 
876  {
877    sub_hbin = hbin;
878    if(!regfi_offset_in_hbin(hbin, nk->subkeys_off))
879      sub_hbin = regfi_lookup_hbin(file, nk->subkeys_off);
880
881    if (sub_hbin == NULL) 
882    {
883      if(strict)
884      {
885        regfi_key_free(nk);
886        return NULL;
887      }
888      else
889        nk->subkeys = NULL;
890    }
891    else
892    {
893      off = nk->subkeys_off + REGF_BLOCKSIZE;
894      max_length = sub_hbin->block_size + sub_hbin->file_off - off;
895      nk->subkeys = regfi_load_subkeylist(file, off, nk->num_subkeys, 
896                                          max_length, true);
897      if(nk->subkeys == NULL)
898      {
899        /* XXX: Should we free the key and bail out here instead? 
900         *      During nonstrict?
901         */
902        nk->num_subkeys = 0;
903      }
904    }
905  }
906
907  return nk;
908}
909
910
911/******************************************************************************
912
913 ******************************************************************************/
914static bool regfi_find_root_nk(REGF_FILE* file, uint32 offset, uint32 hbin_size,
915                               uint32* root_offset)
916{
917  uint8 tmp[4];
918  int32 record_size;
919  uint32 length, hbin_offset = 0;
920  REGF_NK_REC* nk = NULL;
921  bool found = false;
922
923  for(record_size=0; !found && (hbin_offset < hbin_size); )
924  {
925    if(lseek(file->fd, offset+hbin_offset, SEEK_SET) == -1)
926      return false;
927   
928    length = 4;
929    if((regfi_read(file->fd, tmp, &length) != 0) || length != 4)
930      return false;
931    record_size = IVALS(tmp, 0);
932
933    if(record_size < 0)
934    {
935      record_size = record_size*(-1);
936      nk = regfi_parse_nk(file, offset+hbin_offset, hbin_size-hbin_offset, true);
937      if(nk != NULL)
938      {
939        if((nk->key_type == NK_TYPE_ROOTKEY1)
940           || (nk->key_type == NK_TYPE_ROOTKEY2))
941        {
942          found = true;
943          *root_offset = nk->offset;
944        }
945        free(nk);
946      }
947    }
948
949    hbin_offset += record_size;
950  }
951
952  return found;
953}
954
955
956/*******************************************************************
957 * Open the registry file and then read in the REGF block to get the
958 * first hbin offset.
959 *******************************************************************/
960REGF_FILE* regfi_open(const char* filename)
961{
962  REGF_FILE* rb;
963  REGF_HBIN* hbin = NULL;
964  uint32 hbin_off;
965  int fd;
966  bool rla;
967
968  /* open an existing file */
969  if ((fd = open(filename, O_RDONLY)) == -1) 
970  {
971    /* DEBUG(0,("regfi_open: failure to open %s (%s)\n", filename, strerror(errno)));*/
972    return NULL;
973  }
974 
975  /* read in an existing file */
976  if ((rb = regfi_parse_regf(fd, true)) == NULL) 
977  {
978    /* DEBUG(0,("regfi_open: Failed to read initial REGF block\n"));*/
979    close(fd);
980    return NULL;
981  }
982 
983  rb->hbins = range_list_new();
984  if(rb->hbins == NULL)
985  {
986    range_list_free(rb->hbins);
987    close(fd);
988    free(rb);
989    return NULL;
990  }
991 
992  rla = true;
993  hbin_off = REGF_BLOCKSIZE;
994  hbin = regfi_parse_hbin(rb, hbin_off, true);
995  while(hbin && rla)
996  {
997    hbin_off = hbin->file_off + hbin->block_size;
998    rla = range_list_add(rb->hbins, hbin->file_off, hbin->block_size, hbin);
999    hbin = regfi_parse_hbin(rb, hbin_off, true);
1000  }
1001
1002  /* success */
1003  return rb;
1004}
1005
1006
1007/*******************************************************************
1008 *******************************************************************/
1009int regfi_close( REGF_FILE *file )
1010{
1011  int fd;
1012  uint32 i;
1013
1014  /* nothing to do if there is no open file */
1015  if ((file == NULL) || (file->fd == -1))
1016    return 0;
1017
1018  fd = file->fd;
1019  file->fd = -1;
1020  for(i=0; i < range_list_size(file->hbins); i++)
1021    free(range_list_get(file->hbins, i)->data);
1022  range_list_free(file->hbins);
1023
1024  free(file);
1025
1026  return close(fd);
1027}
1028
1029
1030/******************************************************************************
1031 * There should be only *one* root key in the registry file based
1032 * on my experience.  --jerry
1033 *****************************************************************************/
1034REGF_NK_REC* regfi_rootkey(REGF_FILE *file)
1035{
1036  REGF_NK_REC* nk = NULL;
1037  REGF_HBIN*   hbin;
1038  uint32       root_offset, i, num_hbins;
1039 
1040  if(!file)
1041    return NULL;
1042
1043  /* Scan through the file one HBIN block at a time looking
1044     for an NK record with a type == 0x002c.
1045     Normally this is the first nk record in the first hbin
1046     block (but I'm not assuming that for now) */
1047
1048  num_hbins = range_list_size(file->hbins);
1049  for(i=0; i < num_hbins; i++)
1050  {
1051    hbin = (REGF_HBIN*)range_list_get(file->hbins, i)->data;
1052    if(regfi_find_root_nk(file, hbin->file_off+HBIN_HEADER_REC_SIZE, 
1053                          hbin->block_size-HBIN_HEADER_REC_SIZE, &root_offset))
1054    {
1055      nk = regfi_load_key(file, root_offset, true);
1056      break;
1057    }
1058  }
1059
1060  return nk;
1061}
1062
1063
1064/******************************************************************************
1065 *****************************************************************************/
1066void regfi_key_free(REGF_NK_REC* nk)
1067{
1068  uint32 i;
1069 
1070  if((nk->values != NULL) && (nk->values_off!=REGF_OFFSET_NONE))
1071  {
1072    for(i=0; i < nk->num_values; i++)
1073    {
1074      if(nk->values[i]->valuename != NULL)
1075        free(nk->values[i]->valuename);
1076      if(nk->values[i]->data != NULL)
1077        free(nk->values[i]->data);
1078      free(nk->values[i]);
1079    }
1080    free(nk->values);
1081  }
1082
1083  regfi_subkeylist_free(nk->subkeys);
1084
1085  if(nk->keyname != NULL)
1086    free(nk->keyname);
1087  if(nk->classname != NULL)
1088    free(nk->classname);
1089
1090  /* XXX: not freeing hbin because these are cached.  This needs to be reviewed. */
1091  /* XXX: not freeing sec_desc because these are cached.  This needs to be reviewed. */
1092  free(nk);
1093}
1094
1095
1096/******************************************************************************
1097 *****************************************************************************/
1098void regfi_subkeylist_free(REGF_SUBKEY_LIST* list)
1099{
1100  if(list != NULL)
1101  {
1102    free(list->elements);
1103    free(list);
1104  }
1105}
1106
1107
1108/******************************************************************************
1109 *****************************************************************************/
1110REGFI_ITERATOR* regfi_iterator_new(REGF_FILE* fh)
1111{
1112  REGF_NK_REC* root;
1113  REGFI_ITERATOR* ret_val = (REGFI_ITERATOR*)malloc(sizeof(REGFI_ITERATOR));
1114  if(ret_val == NULL)
1115    return NULL;
1116
1117  root = regfi_rootkey(fh);
1118  if(root == NULL)
1119  {
1120    free(ret_val);
1121    return NULL;
1122  }
1123
1124  ret_val->key_positions = void_stack_new(REGF_MAX_DEPTH);
1125  if(ret_val->key_positions == NULL)
1126  {
1127    free(ret_val);
1128    free(root);
1129    return NULL;
1130  }
1131
1132  /* This secret isn't very secret, but we don't need a good one.  This
1133   * secret is just designed to prevent someone from trying to blow our
1134   * caching and make things slow.
1135   */
1136  ret_val->sk_recs = lru_cache_create(127, 0x15DEAD05^time(NULL)
1137                                           ^(getpid()<<16)^(getppid()<<8),
1138                                      true);
1139
1140  ret_val->f = fh;
1141  ret_val->cur_key = root;
1142  ret_val->cur_subkey = 0;
1143  ret_val->cur_value = 0;
1144
1145  return ret_val;
1146}
1147
1148
1149/******************************************************************************
1150 *****************************************************************************/
1151void regfi_iterator_free(REGFI_ITERATOR* i)
1152{
1153  REGFI_ITER_POSITION* cur;
1154
1155  if(i->cur_key != NULL)
1156    regfi_key_free(i->cur_key);
1157
1158  while((cur = (REGFI_ITER_POSITION*)void_stack_pop(i->key_positions)) != NULL)
1159  {
1160    regfi_key_free(cur->nk);
1161    free(cur);
1162  }
1163 
1164  lru_cache_destroy(i->sk_recs);
1165
1166  free(i);
1167}
1168
1169
1170
1171/******************************************************************************
1172 *****************************************************************************/
1173/* XXX: some way of indicating reason for failure should be added. */
1174bool regfi_iterator_down(REGFI_ITERATOR* i)
1175{
1176  REGF_NK_REC* subkey;
1177  REGFI_ITER_POSITION* pos;
1178
1179  pos = (REGFI_ITER_POSITION*)malloc(sizeof(REGFI_ITER_POSITION));
1180  if(pos == NULL)
1181    return false;
1182
1183  subkey = (REGF_NK_REC*)regfi_iterator_cur_subkey(i);
1184  if(subkey == NULL)
1185  {
1186    free(pos);
1187    return false;
1188  }
1189
1190  pos->nk = i->cur_key;
1191  pos->cur_subkey = i->cur_subkey;
1192  if(!void_stack_push(i->key_positions, pos))
1193  {
1194    free(pos);
1195    regfi_key_free(subkey);
1196    return false;
1197  }
1198
1199  i->cur_key = subkey;
1200  i->cur_subkey = 0;
1201  i->cur_value = 0;
1202
1203  return true;
1204}
1205
1206
1207/******************************************************************************
1208 *****************************************************************************/
1209bool regfi_iterator_up(REGFI_ITERATOR* i)
1210{
1211  REGFI_ITER_POSITION* pos;
1212
1213  pos = (REGFI_ITER_POSITION*)void_stack_pop(i->key_positions);
1214  if(pos == NULL)
1215    return false;
1216
1217  regfi_key_free(i->cur_key);
1218  i->cur_key = pos->nk;
1219  i->cur_subkey = pos->cur_subkey;
1220  i->cur_value = 0;
1221  free(pos);
1222
1223  return true;
1224}
1225
1226
1227/******************************************************************************
1228 *****************************************************************************/
1229bool regfi_iterator_to_root(REGFI_ITERATOR* i)
1230{
1231  while(regfi_iterator_up(i))
1232    continue;
1233
1234  return true;
1235}
1236
1237
1238/******************************************************************************
1239 *****************************************************************************/
1240bool regfi_iterator_find_subkey(REGFI_ITERATOR* i, const char* subkey_name)
1241{
1242  REGF_NK_REC* subkey;
1243  bool found = false;
1244  uint32 old_subkey = i->cur_subkey;
1245
1246  if(subkey_name == NULL)
1247    return false;
1248
1249  /* XXX: this alloc/free of each sub key might be a bit excessive */
1250  subkey = (REGF_NK_REC*)regfi_iterator_first_subkey(i);
1251  while((subkey != NULL) && (found == false))
1252  {
1253    if(subkey->keyname != NULL 
1254       && strcasecmp(subkey->keyname, subkey_name) == 0)
1255      found = true;
1256    else
1257    {
1258      regfi_key_free(subkey);
1259      subkey = (REGF_NK_REC*)regfi_iterator_next_subkey(i);
1260    }
1261  }
1262
1263  if(found == false)
1264  {
1265    i->cur_subkey = old_subkey;
1266    return false;
1267  }
1268
1269  regfi_key_free(subkey);
1270  return true;
1271}
1272
1273
1274/******************************************************************************
1275 *****************************************************************************/
1276bool regfi_iterator_walk_path(REGFI_ITERATOR* i, const char** path)
1277{
1278  uint32 x;
1279  if(path == NULL)
1280    return false;
1281
1282  for(x=0; 
1283      ((path[x] != NULL) && regfi_iterator_find_subkey(i, path[x])
1284       && regfi_iterator_down(i));
1285      x++)
1286  { continue; }
1287
1288  if(path[x] == NULL)
1289    return true;
1290 
1291  /* XXX: is this the right number of times? */
1292  for(; x > 0; x--)
1293    regfi_iterator_up(i);
1294 
1295  return false;
1296}
1297
1298
1299/******************************************************************************
1300 *****************************************************************************/
1301const REGF_NK_REC* regfi_iterator_cur_key(REGFI_ITERATOR* i)
1302{
1303  return i->cur_key;
1304}
1305
1306
1307/******************************************************************************
1308 *****************************************************************************/
1309const REGF_SK_REC* regfi_iterator_cur_sk(REGFI_ITERATOR* i)
1310{
1311  REGF_SK_REC* ret_val;
1312  REGF_HBIN* hbin;
1313  uint32 max_length, off;
1314
1315  if(i->cur_key == NULL)
1316    return NULL;
1317 
1318  /* First look if we have already parsed it */
1319  if((i->cur_key->sk_off!=REGF_OFFSET_NONE)
1320     && !(ret_val =(REGF_SK_REC*)lru_cache_find(i->sk_recs, 
1321                                                &i->cur_key->sk_off, 4)))
1322  {
1323    hbin = regfi_lookup_hbin(i->f, i->cur_key->sk_off);
1324
1325    if(hbin == NULL)
1326      return NULL;
1327
1328    off = i->cur_key->sk_off + REGF_BLOCKSIZE;
1329    max_length = hbin->block_size + hbin->file_off - off;
1330    ret_val = regfi_parse_sk(i->f, off, max_length, true);
1331    if(ret_val == NULL)
1332      return NULL;
1333
1334    ret_val->sk_off = i->cur_key->sk_off;
1335    lru_cache_update(i->sk_recs, &i->cur_key->sk_off, 4, ret_val);
1336  }
1337
1338  return ret_val;
1339}
1340
1341
1342
1343/******************************************************************************
1344 *****************************************************************************/
1345const REGF_NK_REC* regfi_iterator_first_subkey(REGFI_ITERATOR* i)
1346{
1347  i->cur_subkey = 0;
1348  return regfi_iterator_cur_subkey(i);
1349}
1350
1351
1352/******************************************************************************
1353 *****************************************************************************/
1354const REGF_NK_REC* regfi_iterator_cur_subkey(REGFI_ITERATOR* i)
1355{
1356  uint32 nk_offset;
1357
1358  /* see if there is anything left to report */
1359  if (!(i->cur_key) || (i->cur_key->subkeys_off==REGF_OFFSET_NONE)
1360      || (i->cur_subkey >= i->cur_key->num_subkeys))
1361    return NULL;
1362
1363  nk_offset = i->cur_key->subkeys->elements[i->cur_subkey].nk_off;
1364
1365  return regfi_load_key(i->f, nk_offset+REGF_BLOCKSIZE, true);
1366}
1367
1368
1369/******************************************************************************
1370 *****************************************************************************/
1371/* XXX: some way of indicating reason for failure should be added. */
1372const REGF_NK_REC* regfi_iterator_next_subkey(REGFI_ITERATOR* i)
1373{
1374  const REGF_NK_REC* subkey;
1375
1376  i->cur_subkey++;
1377  subkey = regfi_iterator_cur_subkey(i);
1378
1379  if(subkey == NULL)
1380    i->cur_subkey--;
1381
1382  return subkey;
1383}
1384
1385
1386/******************************************************************************
1387 *****************************************************************************/
1388bool regfi_iterator_find_value(REGFI_ITERATOR* i, const char* value_name)
1389{
1390  const REGF_VK_REC* cur;
1391  bool found = false;
1392
1393  /* XXX: cur->valuename can be NULL in the registry. 
1394   *      Should we allow for a way to search for that?
1395   */
1396  if(value_name == NULL)
1397    return false;
1398
1399  cur = regfi_iterator_first_value(i);
1400  while((cur != NULL) && (found == false))
1401  {
1402    if((cur->valuename != NULL)
1403       && (strcasecmp(cur->valuename, value_name) == 0))
1404      found = true;
1405    else
1406      cur = regfi_iterator_next_value(i);
1407  }
1408
1409  return found;
1410}
1411
1412
1413/******************************************************************************
1414 *****************************************************************************/
1415const REGF_VK_REC* regfi_iterator_first_value(REGFI_ITERATOR* i)
1416{
1417  i->cur_value = 0;
1418  return regfi_iterator_cur_value(i);
1419}
1420
1421
1422/******************************************************************************
1423 *****************************************************************************/
1424const REGF_VK_REC* regfi_iterator_cur_value(REGFI_ITERATOR* i)
1425{
1426  REGF_VK_REC* ret_val = NULL;
1427  if(i->cur_value < i->cur_key->num_values)
1428    ret_val = i->cur_key->values[i->cur_value];
1429
1430  return ret_val;
1431}
1432
1433
1434/******************************************************************************
1435 *****************************************************************************/
1436const REGF_VK_REC* regfi_iterator_next_value(REGFI_ITERATOR* i)
1437{
1438  const REGF_VK_REC* ret_val;
1439
1440  i->cur_value++;
1441  ret_val = regfi_iterator_cur_value(i);
1442  if(ret_val == NULL)
1443    i->cur_value--;
1444
1445  return ret_val;
1446}
1447
1448
1449
1450/*******************************************************************
1451 * Computes the checksum of the registry file header.
1452 * buffer must be at least the size of an regf header (4096 bytes).
1453 *******************************************************************/
1454static uint32 regfi_compute_header_checksum(uint8* buffer)
1455{
1456  uint32 checksum, x;
1457  int i;
1458
1459  /* XOR of all bytes 0x0000 - 0x01FB */
1460
1461  checksum = x = 0;
1462 
1463  for ( i=0; i<0x01FB; i+=4 ) {
1464    x = IVAL(buffer, i );
1465    checksum ^= x;
1466  }
1467 
1468  return checksum;
1469}
1470
1471
1472/*******************************************************************
1473 * XXX: Add way to return more detailed error information.
1474 *******************************************************************/
1475REGF_FILE* regfi_parse_regf(int fd, bool strict)
1476{
1477  uint8 file_header[REGF_BLOCKSIZE];
1478  uint32 length;
1479  uint32 file_length;
1480  struct stat sbuf;
1481  REGF_FILE* ret_val;
1482
1483  /* Determine file length.  Must be at least big enough
1484   * for the header and one hbin.
1485   */
1486  if (fstat(fd, &sbuf) == -1)
1487    return NULL;
1488  file_length = sbuf.st_size;
1489  if(file_length < REGF_BLOCKSIZE+REGF_ALLOC_BLOCK)
1490    return NULL;
1491
1492  ret_val = (REGF_FILE*)zalloc(sizeof(REGF_FILE));
1493  if(ret_val == NULL)
1494    return NULL;
1495
1496  ret_val->fd = fd;
1497  ret_val->file_length = file_length;
1498
1499  length = REGF_BLOCKSIZE;
1500  if((regfi_read(fd, file_header, &length)) != 0 
1501     || length != REGF_BLOCKSIZE)
1502  {
1503    free(ret_val);
1504    return NULL;
1505  }
1506
1507  ret_val->checksum = IVAL(file_header, 0x1FC);
1508  ret_val->computed_checksum = regfi_compute_header_checksum(file_header);
1509  if (strict && (ret_val->checksum != ret_val->computed_checksum))
1510  {
1511    free(ret_val);
1512    return NULL;
1513  }
1514
1515  memcpy(ret_val->magic, file_header, 4);
1516  if(strict && (memcmp(ret_val->magic, "regf", 4) != 0))
1517  {
1518    free(ret_val);
1519    return NULL;
1520  }
1521 
1522  ret_val->unknown1 = IVAL(file_header, 0x4);
1523  ret_val->unknown2 = IVAL(file_header, 0x8);
1524
1525  ret_val->mtime.low = IVAL(file_header, 0xC);
1526  ret_val->mtime.high = IVAL(file_header, 0x10);
1527
1528  ret_val->unknown3 = IVAL(file_header, 0x14);
1529  ret_val->unknown4 = IVAL(file_header, 0x18);
1530  ret_val->unknown5 = IVAL(file_header, 0x1C);
1531  ret_val->unknown6 = IVAL(file_header, 0x20);
1532 
1533  ret_val->data_offset = IVAL(file_header, 0x24);
1534  ret_val->last_block = IVAL(file_header, 0x28);
1535
1536  ret_val->unknown7 = IVAL(file_header, 0x2C);
1537
1538  return ret_val;
1539}
1540
1541
1542
1543/*******************************************************************
1544 * Given real file offset, read and parse the hbin at that location
1545 * along with it's associated cells.
1546 *******************************************************************/
1547/* XXX: Need a way to return types of errors.
1548 */
1549REGF_HBIN* regfi_parse_hbin(REGF_FILE* file, uint32 offset, bool strict)
1550{
1551  REGF_HBIN *hbin;
1552  uint8 hbin_header[HBIN_HEADER_REC_SIZE];
1553  uint32 length;
1554 
1555  if(offset >= file->file_length)
1556    return NULL;
1557
1558  if(lseek(file->fd, offset, SEEK_SET) == -1)
1559    return NULL;
1560
1561  length = HBIN_HEADER_REC_SIZE;
1562  if((regfi_read(file->fd, hbin_header, &length) != 0) 
1563     || length != HBIN_HEADER_REC_SIZE)
1564    return NULL;
1565
1566
1567  if(lseek(file->fd, offset, SEEK_SET) == -1)
1568    return NULL;
1569
1570  if(!(hbin = (REGF_HBIN*)zalloc(sizeof(REGF_HBIN)))) 
1571    return NULL;
1572  hbin->file_off = offset;
1573
1574  memcpy(hbin->magic, hbin_header, 4);
1575  if(strict && (memcmp(hbin->magic, "hbin", 4) != 0))
1576  {
1577    free(hbin);
1578    return NULL;
1579  }
1580
1581  hbin->first_hbin_off = IVAL(hbin_header, 0x4);
1582  hbin->block_size = IVAL(hbin_header, 0x8);
1583  /* this should be the same thing as hbin->block_size but just in case */
1584  hbin->next_block = IVAL(hbin_header, 0x1C);
1585
1586
1587  /* Ensure the block size is a multiple of 0x1000 and doesn't run off
1588   * the end of the file.
1589   */
1590  /* XXX: This may need to be relaxed for dealing with
1591   *      partial or corrupt files.
1592   */
1593  if((offset + hbin->block_size > file->file_length)
1594     || (hbin->block_size & 0xFFFFF000) != hbin->block_size)
1595  {
1596    free(hbin);
1597    return NULL;
1598  }
1599
1600  return hbin;
1601}
1602
1603
1604/*******************************************************************
1605 *******************************************************************/
1606REGF_NK_REC* regfi_parse_nk(REGF_FILE* file, uint32 offset, 
1607                            uint32 max_size, bool strict)
1608{
1609  uint8 nk_header[REGFI_NK_MIN_LENGTH];
1610  REGF_HBIN *hbin;
1611  REGF_NK_REC* ret_val;
1612  uint32 length,cell_length;
1613  uint32 class_offset, class_maxsize;
1614  bool unalloc = false;
1615
1616  if(!regfi_parse_cell(file->fd, offset, nk_header, REGFI_NK_MIN_LENGTH,
1617                       &cell_length, &unalloc))
1618     return NULL;
1619 
1620  /* A bit of validation before bothering to allocate memory */
1621  if((nk_header[0x0] != 'n') || (nk_header[0x1] != 'k'))
1622    return NULL;
1623
1624  ret_val = (REGF_NK_REC*)zalloc(sizeof(REGF_NK_REC));
1625  if(ret_val == NULL)
1626    return NULL;
1627
1628  ret_val->offset = offset;
1629  ret_val->cell_size = cell_length;
1630
1631  if(ret_val->cell_size > max_size)
1632    ret_val->cell_size = max_size & 0xFFFFFFF8;
1633  if((ret_val->cell_size < REGFI_NK_MIN_LENGTH) 
1634     || (strict && ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8)))
1635  {
1636    free(ret_val);
1637    return NULL;
1638  }
1639
1640  ret_val->magic[0] = nk_header[0x0];
1641  ret_val->magic[1] = nk_header[0x1];
1642  ret_val->key_type = SVAL(nk_header, 0x2);
1643  if((ret_val->key_type != NK_TYPE_NORMALKEY)
1644     && (ret_val->key_type != NK_TYPE_ROOTKEY1) 
1645     && (ret_val->key_type != NK_TYPE_ROOTKEY2)
1646     && (ret_val->key_type != NK_TYPE_LINKKEY)
1647     && (ret_val->key_type != NK_TYPE_UNKNOWN1))
1648  {
1649    free(ret_val);
1650    return NULL;
1651  }
1652
1653  ret_val->mtime.low = IVAL(nk_header, 0x4);
1654  ret_val->mtime.high = IVAL(nk_header, 0x8);
1655  /* If the key is unallocated and the MTIME is earlier than Jan 1, 1990
1656   * or later than Jan 1, 2290, we consider this a bad key.  This helps
1657   * weed out some false positives during deleted data recovery.
1658   */
1659  if(unalloc
1660     && ((ret_val->mtime.high < REGFI_MTIME_MIN_HIGH
1661          && ret_val->mtime.low < REGFI_MTIME_MIN_LOW)
1662         || (ret_val->mtime.high > REGFI_MTIME_MAX_HIGH
1663             && ret_val->mtime.low > REGFI_MTIME_MAX_LOW)))
1664    return NULL;
1665
1666  ret_val->unknown1 = IVAL(nk_header, 0xC);
1667  ret_val->parent_off = IVAL(nk_header, 0x10);
1668  ret_val->num_subkeys = IVAL(nk_header, 0x14);
1669  ret_val->unknown2 = IVAL(nk_header, 0x18);
1670  ret_val->subkeys_off = IVAL(nk_header, 0x1C);
1671  ret_val->unknown3 = IVAL(nk_header, 0x20);
1672  ret_val->num_values = IVAL(nk_header, 0x24);
1673  ret_val->values_off = IVAL(nk_header, 0x28);
1674  ret_val->sk_off = IVAL(nk_header, 0x2C);
1675  ret_val->classname_off = IVAL(nk_header, 0x30);
1676
1677  ret_val->max_bytes_subkeyname = IVAL(nk_header, 0x34);
1678  ret_val->max_bytes_subkeyclassname = IVAL(nk_header, 0x38);
1679  ret_val->max_bytes_valuename = IVAL(nk_header, 0x3C);
1680  ret_val->max_bytes_value = IVAL(nk_header, 0x40);
1681  ret_val->unk_index = IVAL(nk_header, 0x44);
1682
1683  ret_val->name_length = SVAL(nk_header, 0x48);
1684  ret_val->classname_length = SVAL(nk_header, 0x4A);
1685
1686
1687  if(ret_val->name_length + REGFI_NK_MIN_LENGTH > ret_val->cell_size)
1688  {
1689    if(strict)
1690    {
1691      free(ret_val);
1692      return NULL;
1693    }
1694    else
1695      ret_val->name_length = ret_val->cell_size - REGFI_NK_MIN_LENGTH;
1696  }
1697  else if (unalloc)
1698  { /* Truncate cell_size if it's much larger than the apparent total record length. */
1699    /* Round up to the next multiple of 8 */
1700    length = (ret_val->name_length + REGFI_NK_MIN_LENGTH) & 0xFFFFFFF8;
1701    if(length < ret_val->name_length + REGFI_NK_MIN_LENGTH)
1702      length+=8;
1703
1704    /* If cell_size is still greater, truncate. */
1705    if(length < ret_val->cell_size)
1706      ret_val->cell_size = length;
1707  }
1708
1709  ret_val->keyname = (char*)zalloc(sizeof(char)*(ret_val->name_length+1));
1710  if(ret_val->keyname == NULL)
1711  {
1712    free(ret_val);
1713    return NULL;
1714  }
1715
1716  /* Don't need to seek, should be at the right offset */
1717  length = ret_val->name_length;
1718  if((regfi_read(file->fd, (uint8*)ret_val->keyname, &length) != 0)
1719     || length != ret_val->name_length)
1720  {
1721    free(ret_val->keyname);
1722    free(ret_val);
1723    return NULL;
1724  }
1725  ret_val->keyname[ret_val->name_length] = '\0';
1726
1727  if(ret_val->classname_off != REGF_OFFSET_NONE)
1728  {
1729    hbin = regfi_lookup_hbin(file, ret_val->classname_off);
1730    if(hbin)
1731    {
1732      class_offset = ret_val->classname_off+REGF_BLOCKSIZE;
1733      class_maxsize = hbin->block_size + hbin->file_off - class_offset;
1734      ret_val->classname
1735        = regfi_parse_classname(file, class_offset, &ret_val->classname_length, 
1736                                class_maxsize, strict);
1737    }
1738    else
1739      ret_val->classname = NULL;
1740    /*
1741    if(strict && ret_val->classname == NULL)
1742        return NULL;
1743    */
1744  }
1745
1746  return ret_val;
1747}
1748
1749
1750char* regfi_parse_classname(REGF_FILE* file, uint32 offset, 
1751                            uint16* name_length, uint32 max_size, bool strict)
1752{
1753  char* ret_val = NULL;
1754  uint32 length;
1755  uint32 cell_length;
1756  bool unalloc = false;
1757
1758  if(*name_length > 0 && offset != REGF_OFFSET_NONE
1759     && offset == (offset & 0xFFFFFFF8))
1760  {
1761    if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc))
1762        return NULL;
1763
1764    if((cell_length & 0xFFFFFFF8) != cell_length)
1765      return NULL;
1766   
1767    if(cell_length > max_size)
1768    {
1769      if(strict)
1770        return NULL;
1771      cell_length = max_size;
1772    }
1773
1774    if((cell_length - 4) < *name_length)
1775    {
1776      if(strict)
1777        return NULL;
1778      *name_length = cell_length - 4;
1779    }
1780   
1781    ret_val = (char*)zalloc(*name_length);
1782    if(ret_val != NULL)
1783    {
1784      length = *name_length;
1785      if((regfi_read(file->fd, (uint8*)ret_val, &length) != 0)
1786         || length != *name_length)
1787      {
1788        free(ret_val);
1789        return NULL;
1790      }
1791
1792      /*printf("==> cell_length=%d, classname_length=%d, max_bytes_subkeyclassname=%d\n", cell_length, ret_val->classname_length, ret_val->max_bytes_subkeyclassname);*/
1793    }
1794  }
1795
1796  return ret_val;
1797}
1798
1799
1800/*******************************************************************
1801 *******************************************************************/
1802REGF_VK_REC* regfi_parse_vk(REGF_FILE* file, uint32 offset, 
1803                            uint32 max_size, bool strict)
1804{
1805  REGF_VK_REC* ret_val;
1806  REGF_HBIN *hbin;
1807  uint8 vk_header[REGFI_VK_MIN_LENGTH];
1808  uint32 raw_data_size, length, cell_length;
1809  uint32 data_offset, data_maxsize;
1810  bool unalloc = false;
1811
1812  if(!regfi_parse_cell(file->fd, offset, vk_header, REGFI_VK_MIN_LENGTH,
1813                       &cell_length, &unalloc))
1814    return NULL;
1815
1816  ret_val = (REGF_VK_REC*)zalloc(sizeof(REGF_VK_REC));
1817  if(ret_val == NULL)
1818    return NULL;
1819
1820  ret_val->offset = offset;
1821  ret_val->cell_size = cell_length;
1822
1823  if(ret_val->cell_size > max_size)
1824    ret_val->cell_size = max_size & 0xFFFFFFF8;
1825  if((ret_val->cell_size < REGFI_VK_MIN_LENGTH) 
1826     || ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8))
1827  {
1828    free(ret_val);
1829    return NULL;
1830  }
1831
1832  ret_val->magic[0] = vk_header[0x0];
1833  ret_val->magic[1] = vk_header[0x1];
1834  if((ret_val->magic[0] != 'v') || (ret_val->magic[1] != 'k'))
1835  {
1836    /* XXX: This does not account for deleted keys under Win2K which
1837     *      often have this (and the name length) overwritten with
1838     *      0xFFFF.
1839     */
1840    free(ret_val);
1841    return NULL;
1842  }
1843
1844  ret_val->name_length = SVAL(vk_header, 0x2);
1845  raw_data_size = IVAL(vk_header, 0x4);
1846  ret_val->data_size = raw_data_size & ~VK_DATA_IN_OFFSET;
1847  ret_val->data_in_offset = (bool)(raw_data_size & VK_DATA_IN_OFFSET);
1848  ret_val->data_off = IVAL(vk_header, 0x8);
1849  ret_val->type = IVAL(vk_header, 0xC);
1850  ret_val->flag = SVAL(vk_header, 0x10);
1851  ret_val->unknown1 = SVAL(vk_header, 0x12);
1852
1853  if(ret_val->flag & VK_FLAG_NAME_PRESENT)
1854  {
1855    if(ret_val->name_length + REGFI_VK_MIN_LENGTH + 4 > ret_val->cell_size)
1856    {
1857      if(strict)
1858      {
1859        free(ret_val);
1860        return NULL;
1861      }
1862      else
1863        ret_val->name_length = ret_val->cell_size - REGFI_VK_MIN_LENGTH - 4;
1864    }
1865
1866    /* Round up to the next multiple of 8 */
1867    cell_length = (ret_val->name_length + REGFI_VK_MIN_LENGTH + 4) & 0xFFFFFFF8;
1868    if(cell_length < ret_val->name_length + REGFI_VK_MIN_LENGTH + 4)
1869      cell_length+=8;
1870
1871    ret_val->valuename = (char*)zalloc(sizeof(char)*(ret_val->name_length+1));
1872    if(ret_val->valuename == NULL)
1873    {
1874      free(ret_val);
1875      return NULL;
1876    }
1877
1878    length = ret_val->name_length;
1879    if((regfi_read(file->fd, (uint8*)ret_val->valuename, &length) != 0)
1880       || length != ret_val->name_length)
1881    {
1882      free(ret_val->valuename);
1883      free(ret_val);
1884      return NULL;
1885    }
1886    ret_val->valuename[ret_val->name_length] = '\0';
1887
1888  }
1889  else
1890    cell_length = REGFI_VK_MIN_LENGTH + 4;
1891
1892  if(unalloc)
1893  {
1894    /* If cell_size is still greater, truncate. */
1895    if(cell_length < ret_val->cell_size)
1896      ret_val->cell_size = cell_length;
1897  }
1898
1899  if(ret_val->data_size == 0)
1900    ret_val->data = NULL;
1901  else
1902  {
1903    if(ret_val->data_in_offset)
1904    {
1905      ret_val->data = regfi_parse_data(file, data_offset, 
1906                                       raw_data_size, 4, strict);
1907    }
1908    else
1909    {
1910      hbin = regfi_lookup_hbin(file, ret_val->data_off);
1911      if(hbin)
1912      {
1913        data_offset = ret_val->data_off+REGF_BLOCKSIZE;
1914        data_maxsize = hbin->block_size + hbin->file_off - data_offset;
1915        ret_val->data = regfi_parse_data(file, data_offset, raw_data_size,
1916                                         data_maxsize, strict);
1917       
1918      }
1919      else
1920        ret_val->data = NULL;
1921    }
1922
1923    if(strict && (ret_val->data == NULL))
1924    {
1925      free(ret_val->valuename);
1926      free(ret_val);
1927      return NULL;
1928    }
1929  }
1930
1931  return ret_val;
1932}
1933
1934
1935uint8* regfi_parse_data(REGF_FILE* file, uint32 offset, uint32 length,
1936                        uint32 max_size, bool strict)
1937{
1938  uint8* ret_val;
1939  uint32 read_length, cell_length;
1940  uint8 i;
1941  bool unalloc;
1942
1943  /* The data is stored in the offset if the size <= 4 */
1944  if (length & VK_DATA_IN_OFFSET)
1945  {
1946    length = length & ~VK_DATA_IN_OFFSET;
1947    if(length > 4)
1948      return NULL;
1949
1950    if((ret_val = (uint8*)zalloc(sizeof(uint8)*length)) == NULL)
1951      return NULL;
1952
1953    offset = offset - REGF_BLOCKSIZE;
1954    for(i = 0; i < length; i++)
1955      ret_val[i] = (uint8)((offset >> i*8) & 0xFF);
1956  }
1957  else
1958  {
1959    if(!regfi_parse_cell(file->fd, offset, NULL, 0,
1960                         &cell_length, &unalloc))
1961      return NULL;
1962
1963    if((cell_length & 0xFFFFFFF8) != cell_length)
1964      return NULL;
1965
1966    if(cell_length > max_size)
1967    {
1968      if(strict)
1969        return NULL;
1970      else
1971        cell_length = max_size;
1972    }
1973
1974    if(cell_length - 4 < length)
1975    {
1976      /* XXX: This strict condition has been triggered in multiple registries.
1977       *      Not sure the cause, but the data length values are very large,
1978       *      such as 53392.
1979       */
1980      if(strict)
1981        return NULL;
1982      else
1983        length = cell_length - 4;
1984    }
1985
1986    if((ret_val = (uint8*)zalloc(sizeof(uint8)*length)) == NULL)
1987      return NULL;
1988
1989    read_length = length;
1990    if((regfi_read(file->fd, ret_val, &read_length) != 0) 
1991       || read_length != length)
1992    {
1993      free(ret_val);
1994      return NULL;
1995    }
1996  }
1997
1998  return ret_val;
1999}
2000
2001
2002range_list* regfi_parse_unalloc_cells(REGF_FILE* file)
2003{
2004  range_list* ret_val;
2005  REGF_HBIN* hbin;
2006  const range_list_element* hbins_elem;
2007  uint32 i, num_hbins, curr_off, cell_len;
2008  bool is_unalloc;
2009
2010  ret_val = range_list_new();
2011  if(ret_val == NULL)
2012    return NULL;
2013
2014  num_hbins = range_list_size(file->hbins);
2015  for(i=0; i<num_hbins; i++)
2016  {
2017    hbins_elem = range_list_get(file->hbins, i);
2018    if(hbins_elem == NULL)
2019      break;
2020    hbin = (REGF_HBIN*)hbins_elem->data;
2021
2022    curr_off = HBIN_HEADER_REC_SIZE;
2023    while(curr_off < hbin->block_size)
2024    {
2025      if(!regfi_parse_cell(file->fd, hbin->file_off+curr_off, NULL, 0,
2026                           &cell_len, &is_unalloc))
2027        break;
2028     
2029      if((cell_len == 0) || ((cell_len & 0xFFFFFFF8) != cell_len))
2030        /* XXX: should report an error here. */
2031        break;
2032     
2033      /* for some reason the record_size of the last record in
2034         an hbin block can extend past the end of the block
2035         even though the record fits within the remaining
2036         space....aaarrrgggghhhhhh */ 
2037      if(curr_off + cell_len >= hbin->block_size)
2038        cell_len = hbin->block_size - curr_off;
2039     
2040      if(is_unalloc)
2041        range_list_add(ret_val, hbin->file_off+curr_off, 
2042                       cell_len, NULL);
2043     
2044      curr_off = curr_off+cell_len;
2045    }
2046  }
2047
2048  return ret_val;
2049}
Note: See TracBrowser for help on using the repository browser.