source: trunk/lib/regfi.c @ 129

Last change on this file since 129 was 129, checked in by tim, 15 years ago

fixed overlooked constant rename

  • Property svn:keywords set to Id
File size: 50.4 KB
Line 
1/*
2 * Branched from Samba project Subversion repository, version #7470:
3 *   http://viewcvs.samba.org/cgi-bin/viewcvs.cgi/trunk/source/registry/regfio.c?rev=7470&view=auto
4 *
5 * Unix SMB/CIFS implementation.
6 * Windows NT registry parsing library
7 *
8 * Copyright (C) 2005-2008 Timothy D. Morgan
9 * Copyright (C) 2005 Gerald (Jerry) Carter
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 3 of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
23 *
24 * $Id: regfi.c 129 2009-01-10 17:38:32Z tim $
25 */
26
27#include "../include/regfi.h"
28
29
30/* Registry types mapping */
31const unsigned int regfi_num_reg_types = 12;
32static const char* regfi_type_names[] =
33  {"NONE", "SZ", "EXPAND_SZ", "BINARY", "DWORD", "DWORD_BE", "LINK",
34   "MULTI_SZ", "RSRC_LIST", "RSRC_DESC", "RSRC_REQ_LIST", "QWORD"};
35
36
37/* Returns NULL on error */
38const char* regfi_type_val2str(unsigned int val)
39{
40  if(val == REG_KEY)
41    return "KEY";
42 
43  if(val >= regfi_num_reg_types)
44    return NULL;
45 
46  return regfi_type_names[val];
47}
48
49
50/* Returns -1 on error */
51int regfi_type_str2val(const char* str)
52{
53  int i;
54
55  if(strcmp("KEY", str) == 0)
56    return REG_KEY;
57
58  for(i=0; i < regfi_num_reg_types; i++)
59    if (strcmp(regfi_type_names[i], str) == 0) 
60      return i;
61
62  if(strcmp("DWORD_LE", str) == 0)
63    return REG_DWORD_LE;
64
65  return -1;
66}
67
68
69/* Security descriptor parsing functions  */
70
71const char* regfi_ace_type2str(uint8 type)
72{
73  static const char* map[7] 
74    = {"ALLOW", "DENY", "AUDIT", "ALARM", 
75       "ALLOW CPD", "OBJ ALLOW", "OBJ DENY"};
76  if(type < 7)
77    return map[type];
78  else
79    /* XXX: would be nice to return the unknown integer value. 
80     *      However, as it is a const string, it can't be free()ed later on,
81     *      so that would need to change.
82     */
83    return "UNKNOWN";
84}
85
86
87/* XXX: need a better reference on the meaning of each flag. */
88/* For more info, see:
89 *   http://msdn2.microsoft.com/en-us/library/aa772242.aspx
90 */
91char* regfi_ace_flags2str(uint8 flags)
92{
93  static const char* flag_map[32] = 
94    { "OI", /* Object Inherit */
95      "CI", /* Container Inherit */
96      "NP", /* Non-Propagate */
97      "IO", /* Inherit Only */
98      "IA", /* Inherited ACE */
99      NULL,
100      NULL,
101      NULL,
102    };
103
104  char* ret_val = malloc(35*sizeof(char));
105  char* fo = ret_val;
106  uint32 i;
107  uint8 f;
108
109  if(ret_val == NULL)
110    return NULL;
111
112  fo[0] = '\0';
113  if (!flags)
114    return ret_val;
115
116  for(i=0; i < 8; i++)
117  {
118    f = (1<<i);
119    if((flags & f) && (flag_map[i] != NULL))
120    {
121      strcpy(fo, flag_map[i]);
122      fo += strlen(flag_map[i]);
123      *(fo++) = ' ';
124      flags ^= f;
125    }
126  }
127 
128  /* Any remaining unknown flags are added at the end in hex. */
129  if(flags != 0)
130    sprintf(fo, "0x%.2X ", flags);
131
132  /* Chop off the last space if we've written anything to ret_val */
133  if(fo != ret_val)
134    fo[-1] = '\0';
135
136  /* XXX: what was this old VI flag for??
137     XXX: Is this check right?  0xF == 1|2|4|8, which makes it redundant...
138  if (flags == 0xF) {
139    if (some) strcat(flg_output, " ");
140    some = 1;
141    strcat(flg_output, "VI");
142  }
143  */
144
145  return ret_val;
146}
147
148
149char* regfi_ace_perms2str(uint32 perms)
150{
151  uint32 i, p;
152  /* This is more than is needed by a fair margin. */
153  char* ret_val = malloc(350*sizeof(char));
154  char* r = ret_val;
155
156  /* Each represents one of 32 permissions bits.  NULL is for undefined/reserved bits.
157   * For more information, see:
158   *   http://msdn2.microsoft.com/en-gb/library/aa374892.aspx
159   *   http://msdn2.microsoft.com/en-gb/library/ms724878.aspx
160   */
161  static const char* perm_map[32] = 
162    {/* object-specific permissions (registry keys, in this case) */
163      "QRY_VAL",       /* KEY_QUERY_VALUE */
164      "SET_VAL",       /* KEY_SET_VALUE */
165      "CREATE_KEY",    /* KEY_CREATE_SUB_KEY */
166      "ENUM_KEYS",     /* KEY_ENUMERATE_SUB_KEYS */
167      "NOTIFY",        /* KEY_NOTIFY */
168      "CREATE_LNK",    /* KEY_CREATE_LINK - Reserved for system use. */
169      NULL,
170      NULL,
171      "WOW64_64",      /* KEY_WOW64_64KEY */
172      "WOW64_32",      /* KEY_WOW64_32KEY */
173      NULL,
174      NULL,
175      NULL,
176      NULL,
177      NULL,
178      NULL,
179      /* standard access rights */
180      "DELETE",        /* DELETE */
181      "R_CONT",        /* READ_CONTROL */
182      "W_DAC",         /* WRITE_DAC */
183      "W_OWNER",       /* WRITE_OWNER */
184      "SYNC",          /* SYNCHRONIZE - Shouldn't be set in registries */
185      NULL,
186      NULL,
187      NULL,
188      /* other generic */
189      "SYS_SEC",       /* ACCESS_SYSTEM_SECURITY */
190      "MAX_ALLWD",     /* MAXIMUM_ALLOWED */
191      NULL,
192      NULL,
193      "GEN_A",         /* GENERIC_ALL */
194      "GEN_X",         /* GENERIC_EXECUTE */
195      "GEN_W",         /* GENERIC_WRITE */
196      "GEN_R",         /* GENERIC_READ */
197    };
198
199
200  if(ret_val == NULL)
201    return NULL;
202
203  r[0] = '\0';
204  for(i=0; i < 32; i++)
205  {
206    p = (1<<i);
207    if((perms & p) && (perm_map[i] != NULL))
208    {
209      strcpy(r, perm_map[i]);
210      r += strlen(perm_map[i]);
211      *(r++) = ' ';
212      perms ^= p;
213    }
214  }
215 
216  /* Any remaining unknown permission bits are added at the end in hex. */
217  if(perms != 0)
218    sprintf(r, "0x%.8X ", perms);
219
220  /* Chop off the last space if we've written anything to ret_val */
221  if(r != ret_val)
222    r[-1] = '\0';
223
224  return ret_val;
225}
226
227
228char* regfi_sid2str(DOM_SID* sid)
229{
230  uint32 i, size = MAXSUBAUTHS*11 + 24;
231  uint32 left = size;
232  uint8 comps = sid->num_auths;
233  char* ret_val = malloc(size);
234 
235  if(ret_val == NULL)
236    return NULL;
237
238  if(comps > MAXSUBAUTHS)
239    comps = MAXSUBAUTHS;
240
241  left -= sprintf(ret_val, "S-%u-%u", sid->sid_rev_num, sid->id_auth[5]);
242
243  for (i = 0; i < comps; i++) 
244    left -= snprintf(ret_val+(size-left), left, "-%u", sid->sub_auths[i]);
245
246  return ret_val;
247}
248
249
250char* regfi_get_acl(SEC_ACL* acl)
251{
252  uint32 i, extra, size = 0;
253  const char* type_str;
254  char* flags_str;
255  char* perms_str;
256  char* sid_str;
257  char* ace_delim = "";
258  char* ret_val = NULL;
259  char* tmp_val = NULL;
260  bool failed = false;
261  char field_delim = ':';
262
263  for (i = 0; i < acl->num_aces && !failed; i++)
264  {
265    sid_str = regfi_sid2str(&acl->ace[i].trustee);
266    type_str = regfi_ace_type2str(acl->ace[i].type);
267    perms_str = regfi_ace_perms2str(acl->ace[i].info.mask);
268    flags_str = regfi_ace_flags2str(acl->ace[i].flags);
269   
270    if(flags_str != NULL && perms_str != NULL 
271       && type_str != NULL && sid_str != NULL)
272    {
273      /* XXX: this is slow */
274      extra = strlen(sid_str) + strlen(type_str) 
275        + strlen(perms_str) + strlen(flags_str)+5;
276      tmp_val = realloc(ret_val, size+extra);
277
278      if(tmp_val == NULL)
279      {
280        free(ret_val);
281        failed = true;
282      }
283      else
284      {
285        ret_val = tmp_val;
286        size += snprintf(ret_val+size, extra, "%s%s%c%s%c%s%c%s",
287                         ace_delim,sid_str,
288                         field_delim,type_str,
289                         field_delim,perms_str,
290                         field_delim,flags_str);
291        ace_delim = "|";
292      }
293    }
294    else
295      failed = true;
296
297    if(sid_str != NULL)
298      free(sid_str);
299    if(sid_str != NULL)
300      free(perms_str);
301    if(sid_str != NULL)
302      free(flags_str);
303  }
304
305  return ret_val;
306}
307
308
309char* regfi_get_sacl(SEC_DESC *sec_desc)
310{
311  if (sec_desc->sacl)
312    return regfi_get_acl(sec_desc->sacl);
313  else
314    return NULL;
315}
316
317
318char* regfi_get_dacl(SEC_DESC *sec_desc)
319{
320  if (sec_desc->dacl)
321    return regfi_get_acl(sec_desc->dacl);
322  else
323    return NULL;
324}
325
326
327char* regfi_get_owner(SEC_DESC *sec_desc)
328{
329  return regfi_sid2str(sec_desc->owner_sid);
330}
331
332
333char* regfi_get_group(SEC_DESC *sec_desc)
334{
335  return regfi_sid2str(sec_desc->grp_sid);
336}
337
338
339/*****************************************************************************
340 * This function is just like read(2), except that it continues to
341 * re-try reading from the file descriptor if EINTR or EAGAIN is received. 
342 * regfi_read will attempt to read length bytes from fd and write them to buf.
343 *
344 * On success, 0 is returned.  Upon failure, an errno code is returned.
345 *
346 * The number of bytes successfully read is returned through the length
347 * parameter by reference.  If both the return value and length parameter are
348 * returned as 0, then EOF was encountered immediately
349 *****************************************************************************/
350uint32 regfi_read(int fd, uint8* buf, uint32* length)
351{
352  uint32 rsize = 0;
353  uint32 rret = 0;
354
355  do
356  {
357    rret = read(fd, buf + rsize, *length - rsize);
358    if(rret > 0)
359      rsize += rret;
360  }while(*length - rsize > 0 
361         && (rret > 0 || (rret == -1 && (errno == EAGAIN || errno == EINTR))));
362 
363  *length = rsize;
364  if (rret == -1 && errno != EINTR && errno != EAGAIN)
365    return errno;
366
367  return 0;
368}
369
370
371/*****************************************************************************
372 *
373 *****************************************************************************/
374bool regfi_parse_cell(int fd, uint32 offset, uint8* hdr, uint32 hdr_len,
375                      uint32* cell_length, bool* unalloc)
376{
377  uint32 length;
378  int32 raw_length;
379  uint8 tmp[4];
380
381  if(lseek(fd, offset, SEEK_SET) == -1)
382    return false;
383
384  length = 4;
385  if((regfi_read(fd, tmp, &length) != 0) || length != 4)
386    return false;
387  raw_length = IVALS(tmp, 0);
388
389  if(raw_length < 0)
390  {
391    (*cell_length) = raw_length*(-1);
392    (*unalloc) = false;
393  }
394  else
395  {
396    (*cell_length) = raw_length;
397    (*unalloc) = true;
398  }
399
400  if(*cell_length - 4 < hdr_len)
401    return false;
402
403  if(hdr_len > 0)
404  {
405    length = hdr_len;
406    if((regfi_read(fd, hdr, &length) != 0) || length != hdr_len)
407      return false;
408  }
409
410  return true;
411}
412
413
414/*******************************************************************
415 * Given an offset and an hbin, is the offset within that hbin?
416 * The offset is a virtual file offset.
417 *******************************************************************/
418static bool regfi_offset_in_hbin(REGF_HBIN* hbin, uint32 offset)
419{
420  if(!hbin)
421    return false;
422
423  if((offset > hbin->first_hbin_off) 
424     && (offset < (hbin->first_hbin_off + hbin->block_size)))
425    return true;
426               
427  return false;
428}
429
430
431
432/*******************************************************************
433 * Given a virtual offset, and receive the correpsonding HBIN
434 * block for it.  NULL if one doesn't exist.
435 *******************************************************************/
436REGF_HBIN* regfi_lookup_hbin(REGF_FILE* file, uint32 offset)
437{
438  return (REGF_HBIN*)range_list_find_data(file->hbins, offset+REGF_BLOCKSIZE);
439}
440
441
442/*******************************************************************
443 *******************************************************************/
444REGF_SUBKEY_LIST* regfi_merge_subkeylists(uint16 num_lists, 
445                                          REGF_SUBKEY_LIST** lists,
446                                          bool strict)
447{
448  uint32 i,j,k;
449  REGF_SUBKEY_LIST* ret_val = (REGF_SUBKEY_LIST*)zalloc(sizeof(REGF_SUBKEY_LIST));
450  if(ret_val == NULL || lists == NULL)
451    return NULL;
452 
453  /* Obtain total number of elements */
454  ret_val->num_keys = 0;
455  for(i=0; i < num_lists; i++)
456  {
457    if(lists[i] == NULL)
458    {
459      ret_val->num_keys = 0;
460      break;
461    }
462    ret_val->num_keys += lists[i]->num_keys;
463  }
464 
465  if(ret_val->num_keys > 0)
466  {
467    ret_val->elements = 
468      (REGF_SUBKEY_LIST_ELEM*)zalloc(sizeof(REGF_SUBKEY_LIST_ELEM)
469                                     * ret_val->num_keys);
470    k=0;
471    if(ret_val->elements != NULL)
472    {
473      for(i=0; i<num_lists; i++)
474        for(j=0; j<lists[i]->num_keys; j++)
475        {
476          ret_val->elements[k].hash=lists[i]->elements[j].hash;
477          ret_val->elements[k++].nk_off=lists[i]->elements[j].nk_off;
478        }
479    }
480  }
481 
482  for(i=0; i < num_lists; i++)
483    regfi_subkeylist_free(lists[i]);
484  free(lists);
485
486  return ret_val;
487}
488
489
490
491/*******************************************************************
492 *******************************************************************/
493REGF_SUBKEY_LIST* regfi_load_subkeylist(REGF_FILE* file, uint32 offset, 
494                                        uint32 num_keys, uint32 max_size, 
495                                        bool strict)
496{
497  REGF_SUBKEY_LIST* ret_val;
498  REGF_SUBKEY_LIST** sublists;
499  REGF_HBIN* sublist_hbin;
500  uint32 i, cell_length, length, num_sublists, off, max_length;
501  uint8* hashes;
502  uint8 buf[REGFI_SUBKEY_LIST_MIN_LEN];
503  bool unalloc;
504
505  if(!regfi_parse_cell(file->fd, offset, buf, REGFI_SUBKEY_LIST_MIN_LEN, 
506                       &cell_length, &unalloc))
507    return NULL;
508
509  if(cell_length > max_size)
510  {
511    if(strict)
512      return NULL;
513    cell_length = max_size & 0xFFFFFFF8;
514  }
515
516  if(buf[0] == 'r' && buf[1] == 'i')
517  {
518    num_sublists = SVAL(buf, 0x2);
519
520    /* XXX: check cell_length vs num_sublists vs max_length */
521    length = num_sublists*sizeof(uint32);
522    hashes = (uint8*)zalloc(length);
523    if(hashes == NULL)
524      return NULL;
525
526    if(regfi_read(file->fd, hashes, &length) != 0
527       || length != num_sublists*sizeof(uint32))
528    { 
529      free(hashes);
530      return NULL; 
531    }
532
533    sublists = (REGF_SUBKEY_LIST**)zalloc(num_sublists*sizeof(REGF_SUBKEY_LIST*));   
534    for(i=0; i < num_sublists; i++)
535    {
536      off = IVAL(hashes, i*4)+REGF_BLOCKSIZE;
537      sublist_hbin = regfi_lookup_hbin(file, IVAL(hashes, i*4));
538      max_length = sublist_hbin->block_size + sublist_hbin->file_off - off;
539
540      /* XXX: Need to add a recursion depth limit of some kind. */
541      sublists[i] = regfi_load_subkeylist(file, off, 0, max_length, strict);
542    }
543   
544    return regfi_merge_subkeylists(num_sublists, sublists, strict);
545  }
546
547  ret_val = (REGF_SUBKEY_LIST*)zalloc(sizeof(REGF_SUBKEY_LIST));
548  if(ret_val == NULL)
549    return NULL;
550
551  ret_val->offset = offset;
552  ret_val->cell_size = cell_length;
553
554  if((buf[0] != 'l' || buf[1] != 'f') && (buf[0] != 'l' || buf[1] != 'h'))
555  {
556    /*printf("DEBUG: lf->header=%c%c\n", buf[0], buf[1]);*/
557    free(ret_val);
558    return NULL;
559  }
560
561  ret_val->magic[0] = buf[0];
562  ret_val->magic[1] = buf[1];
563
564  ret_val->num_keys = SVAL(buf, 0x2);
565  if(num_keys != ret_val->num_keys)
566  {
567    /*  Not sure which should be authoritative, the number from the
568     *  NK record, or the number in the subkey list.  Go with the larger
569     *  of the two to ensure all keys are found, since in 'ri' records,
570     *  there is no authoritative parent count for a leaf subkey list. 
571     *  Note the length checks on the cell later ensure that there won't
572     *  be any critical errors.
573     */
574    if(num_keys < ret_val->num_keys)
575      num_keys = ret_val->num_keys;
576    else
577      ret_val->num_keys = num_keys;
578  }
579
580  if(cell_length - REGFI_SUBKEY_LIST_MIN_LEN - sizeof(uint32) 
581     < ret_val->num_keys*sizeof(REGF_SUBKEY_LIST_ELEM))
582    return NULL;
583
584  length = sizeof(REGF_SUBKEY_LIST_ELEM)*ret_val->num_keys;
585  ret_val->elements = (REGF_SUBKEY_LIST_ELEM*)zalloc(length);
586  if(ret_val->elements == NULL)
587  {
588    free(ret_val);
589    return NULL;
590  }
591
592  hashes = (uint8*)zalloc(length);
593  if(hashes == NULL)
594  {
595    free(ret_val->elements);
596    free(ret_val);
597    return NULL;
598  }
599
600  if(regfi_read(file->fd, hashes, &length) != 0
601     || length != sizeof(REGF_SUBKEY_LIST_ELEM)*ret_val->num_keys)
602  {
603    free(ret_val->elements);
604    free(ret_val);
605    return NULL;
606  }
607
608  for (i=0; i < ret_val->num_keys; i++)
609  {
610    ret_val->elements[i].nk_off = IVAL(hashes, i*sizeof(REGF_SUBKEY_LIST_ELEM));
611    ret_val->elements[i].hash = IVAL(hashes, i*sizeof(REGF_SUBKEY_LIST_ELEM)+4);
612  }
613  free(hashes);
614
615  return ret_val;
616}
617
618
619
620/*******************************************************************
621 *******************************************************************/
622REGF_SK_REC* regfi_parse_sk(REGF_FILE* file, uint32 offset, uint32 max_size, bool strict)
623{
624  REGF_SK_REC* ret_val;
625  uint32 cell_length, length;
626  prs_struct ps;
627  uint8 sk_header[REGFI_SK_MIN_LENGTH];
628  bool unalloc = false;
629
630
631  if(!regfi_parse_cell(file->fd, offset, sk_header, REGFI_SK_MIN_LENGTH,
632                       &cell_length, &unalloc))
633    return NULL;
634   
635  if(sk_header[0] != 's' || sk_header[1] != 'k')
636    return NULL;
637 
638  ret_val = (REGF_SK_REC*)zalloc(sizeof(REGF_SK_REC));
639  if(ret_val == NULL)
640    return NULL;
641
642  ret_val->offset = offset;
643  /* XXX: Is there a way to be more conservative (shorter) with
644   *      cell length when cell is unallocated?
645   */
646  ret_val->cell_size = cell_length;
647
648  if(ret_val->cell_size > max_size)
649    ret_val->cell_size = max_size & 0xFFFFFFF8;
650  if((ret_val->cell_size < REGFI_SK_MIN_LENGTH) 
651     || (strict && ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8)))
652  {
653    free(ret_val);
654    return NULL;
655  }
656
657  ret_val->magic[0] = sk_header[0];
658  ret_val->magic[1] = sk_header[1];
659
660  /* XXX: Can additional validation be added here? */
661  ret_val->unknown_tag = SVAL(sk_header, 0x2);
662  ret_val->prev_sk_off = IVAL(sk_header, 0x4);
663  ret_val->next_sk_off = IVAL(sk_header, 0x8);
664  ret_val->ref_count = IVAL(sk_header, 0xC);
665  ret_val->desc_size = IVAL(sk_header, 0x10);
666
667  if(ret_val->desc_size + REGFI_SK_MIN_LENGTH > ret_val->cell_size)
668  {
669    free(ret_val);
670    return NULL;
671  }
672
673  /* XXX: need to get rid of this, but currently the security descriptor
674   * code depends on the ps structure.
675   */
676  if(!prs_init(&ps, ret_val->desc_size, NULL, UNMARSHALL))
677  {
678    free(ret_val);
679    return NULL;
680  }
681
682  length = ret_val->desc_size;
683  if(regfi_read(file->fd, (uint8*)ps.data_p, &length) != 0 
684     || length != ret_val->desc_size)
685  {
686    free(ret_val);
687    return NULL;
688  }
689
690  if (!sec_io_desc("sec_desc", &ret_val->sec_desc, &ps, 0))
691  {
692    free(ret_val);
693    return NULL;
694  }
695
696  free(ps.data_p);
697
698  return ret_val;
699}
700
701
702uint32* regfi_parse_valuelist(REGF_FILE* file, uint32 offset, 
703                              uint32 num_values, bool strict)
704{
705  uint32* ret_val;
706  uint32 i, cell_length, length, read_len;
707  bool unalloc;
708
709  if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc))
710    return NULL;
711
712  if(cell_length != (cell_length & 0xFFFFFFF8))
713  {
714    if(strict)
715      return NULL;
716    cell_length = cell_length & 0xFFFFFFF8;
717  }
718  if((num_values * sizeof(uint32)) > cell_length-sizeof(uint32))
719    return NULL;
720
721  read_len = num_values*sizeof(uint32);
722  ret_val = (uint32*)malloc(read_len);
723  if(ret_val == NULL)
724    return NULL;
725
726  length = read_len;
727  if((regfi_read(file->fd, (uint8*)ret_val, &length) != 0) || length != read_len)
728  {
729    free(ret_val);
730    return NULL;
731  }
732 
733  for(i=0; i < num_values; i++)
734  {
735    /* Fix endianness */
736    ret_val[i] = IVAL(&ret_val[i], 0);
737
738    /* Validate the first num_values values to ensure they make sense */
739    if(strict)
740    {
741      if((ret_val[i] + REGF_BLOCKSIZE > file->file_length)
742         || ((ret_val[i] & 0xFFFFFFF8) != ret_val[i]))
743      {
744        free(ret_val);
745        return NULL;
746      }
747    }
748  }
749
750  return ret_val;
751}
752
753
754
755/******************************************************************************
756 * If !strict, the list may contain NULLs, VK records may point to NULL.
757 ******************************************************************************/
758REGF_VK_REC** regfi_load_valuelist(REGF_FILE* file, uint32 offset, 
759                                   uint32 num_values, uint32 max_size, 
760                                   bool strict)
761{
762  REGF_VK_REC** ret_val;
763  REGF_HBIN* hbin;
764  uint32 i, vk_offset, vk_max_length, usable_num_values;
765  uint32* voffsets;
766
767  if((num_values+1) * sizeof(uint32) > max_size)
768  {
769    if(strict)
770      return NULL;
771    usable_num_values = max_size/sizeof(uint32) - sizeof(uint32);
772  }
773  else
774    usable_num_values = num_values;
775
776  voffsets = regfi_parse_valuelist(file, offset, usable_num_values, strict);
777  if(voffsets == NULL)
778    return NULL;
779
780  ret_val = (REGF_VK_REC**)zalloc(sizeof(REGF_VK_REC*) * num_values);
781  if(ret_val == NULL)
782  {
783    free(voffsets);
784    return NULL;
785  }
786 
787  for(i=0; i < usable_num_values; i++)
788  {
789    hbin = regfi_lookup_hbin(file, voffsets[i]);
790    if(!hbin)
791    {
792      free(voffsets);
793      free(ret_val);
794      return NULL;
795    }
796   
797    vk_offset =  voffsets[i] + REGF_BLOCKSIZE;
798    vk_max_length = hbin->block_size - vk_offset + sizeof(uint32);
799    ret_val[i] = regfi_parse_vk(file, vk_offset, vk_max_length, strict);
800    if(ret_val[i] == NULL)
801    { /* If we're being strict, throw out the whole list.
802       * Otherwise, let it be NULL.
803       */
804      if(strict)
805      {
806        free(voffsets);
807        free(ret_val);
808        return NULL;
809      }
810    }
811  }
812
813  free(voffsets);
814  return ret_val;
815}
816
817
818
819/*******************************************************************
820 * XXX: Need to add full key caching using a
821 *      custom cache structure.
822 *******************************************************************/
823REGF_NK_REC* regfi_load_key(REGF_FILE* file, uint32 offset, bool strict)
824{
825  REGF_HBIN* hbin;
826  REGF_HBIN* sub_hbin;
827  REGF_NK_REC* nk;
828  uint32 max_length, off;
829
830  hbin = regfi_lookup_hbin(file, offset-REGF_BLOCKSIZE);
831  if (hbin == NULL) 
832    return NULL;
833
834  /* get the initial nk record */
835  max_length = hbin->block_size + hbin->file_off - offset;
836  if ((nk = regfi_parse_nk(file, offset, max_length, true)) == NULL)
837    return NULL;
838
839  /* fill in values */
840  if(nk->num_values && (nk->values_off!=REGF_OFFSET_NONE)) 
841  {
842    sub_hbin = hbin;
843    if(!regfi_offset_in_hbin(hbin, nk->values_off)) 
844      sub_hbin = regfi_lookup_hbin(file, nk->values_off);
845   
846    if(sub_hbin == NULL)
847    {
848      if(strict)
849      {
850        free(nk);
851        return NULL;
852      }
853      else
854        nk->values = NULL;
855    }
856    else
857    {
858      off = nk->values_off + REGF_BLOCKSIZE;
859      max_length = sub_hbin->block_size + sub_hbin->file_off - off;
860      nk->values = regfi_load_valuelist(file, off, nk->num_values, max_length, 
861                                        true);
862      if(strict && nk->values == NULL)
863      {
864        free(nk);
865        return NULL;
866      }
867    }
868  }
869
870  /* now get subkeys */
871  if(nk->num_subkeys && (nk->subkeys_off != REGF_OFFSET_NONE)) 
872  {
873    sub_hbin = hbin;
874    if(!regfi_offset_in_hbin(hbin, nk->subkeys_off))
875      sub_hbin = regfi_lookup_hbin(file, nk->subkeys_off);
876
877    if (sub_hbin == NULL) 
878    {
879      if(strict)
880      {
881        regfi_key_free(nk);
882        return NULL;
883      }
884      else
885        nk->subkeys = NULL;
886    }
887    else
888    {
889      off = nk->subkeys_off + REGF_BLOCKSIZE;
890      max_length = sub_hbin->block_size + sub_hbin->file_off - off;
891      nk->subkeys = regfi_load_subkeylist(file, off, nk->num_subkeys, 
892                                          max_length, true);
893      if(nk->subkeys == NULL)
894      {
895        /* XXX: Should we free the key and bail out here instead? 
896         *      During nonstrict?
897         */
898        nk->num_subkeys = 0;
899      }
900    }
901  }
902
903  return nk;
904}
905
906
907/******************************************************************************
908
909 ******************************************************************************/
910static bool regfi_find_root_nk(REGF_FILE* file, uint32 offset, uint32 hbin_size,
911                               uint32* root_offset)
912{
913  uint8 tmp[4];
914  int32 record_size;
915  uint32 length, hbin_offset = 0;
916  REGF_NK_REC* nk = NULL;
917  bool found = false;
918
919  for(record_size=0; !found && (hbin_offset < hbin_size); )
920  {
921    if(lseek(file->fd, offset+hbin_offset, SEEK_SET) == -1)
922      return false;
923   
924    length = 4;
925    if((regfi_read(file->fd, tmp, &length) != 0) || length != 4)
926      return false;
927    record_size = IVALS(tmp, 0);
928
929    if(record_size < 0)
930    {
931      record_size = record_size*(-1);
932      nk = regfi_parse_nk(file, offset+hbin_offset, hbin_size-hbin_offset, true);
933      if(nk != NULL)
934      {
935        if((nk->key_type == NK_TYPE_ROOTKEY1)
936           || (nk->key_type == NK_TYPE_ROOTKEY2))
937        {
938          found = true;
939          *root_offset = nk->offset;
940        }
941        free(nk);
942      }
943    }
944
945    hbin_offset += record_size;
946  }
947
948  return found;
949}
950
951
952/*******************************************************************
953 * Open the registry file and then read in the REGF block to get the
954 * first hbin offset.
955 *******************************************************************/
956REGF_FILE* regfi_open(const char* filename)
957{
958  REGF_FILE* rb;
959  REGF_HBIN* hbin = NULL;
960  uint32 hbin_off;
961  int fd;
962  bool rla;
963
964  /* open an existing file */
965  if ((fd = open(filename, O_RDONLY)) == -1) 
966  {
967    /* DEBUG(0,("regfi_open: failure to open %s (%s)\n", filename, strerror(errno)));*/
968    return NULL;
969  }
970 
971  /* read in an existing file */
972  if ((rb = regfi_parse_regf(fd, true)) == NULL) 
973  {
974    /* DEBUG(0,("regfi_open: Failed to read initial REGF block\n"));*/
975    close(fd);
976    return NULL;
977  }
978 
979  rb->hbins = range_list_new();
980  if(rb->hbins == NULL)
981  {
982    range_list_free(rb->hbins);
983    close(fd);
984    free(rb);
985    return NULL;
986  }
987 
988  rla = true;
989  hbin_off = REGF_BLOCKSIZE;
990  hbin = regfi_parse_hbin(rb, hbin_off, true);
991  while(hbin && rla)
992  {
993    hbin_off = hbin->file_off + hbin->block_size;
994    rla = range_list_add(rb->hbins, hbin->file_off, hbin->block_size, hbin);
995    hbin = regfi_parse_hbin(rb, hbin_off, true);
996  }
997
998  /* success */
999  return rb;
1000}
1001
1002
1003/*******************************************************************
1004 *******************************************************************/
1005int regfi_close( REGF_FILE *file )
1006{
1007  int fd;
1008  uint32 i;
1009
1010  /* nothing to do if there is no open file */
1011  if ((file == NULL) || (file->fd == -1))
1012    return 0;
1013
1014  fd = file->fd;
1015  file->fd = -1;
1016  for(i=0; i < range_list_size(file->hbins); i++)
1017    free(range_list_get(file->hbins, i)->data);
1018  range_list_free(file->hbins);
1019
1020  free(file);
1021
1022  return close(fd);
1023}
1024
1025
1026/******************************************************************************
1027 * There should be only *one* root key in the registry file based
1028 * on my experience.  --jerry
1029 *****************************************************************************/
1030REGF_NK_REC* regfi_rootkey(REGF_FILE *file)
1031{
1032  REGF_NK_REC* nk = NULL;
1033  REGF_HBIN*   hbin;
1034  uint32       root_offset, i, num_hbins;
1035 
1036  if(!file)
1037    return NULL;
1038
1039  /* Scan through the file one HBIN block at a time looking
1040     for an NK record with a type == 0x002c.
1041     Normally this is the first nk record in the first hbin
1042     block (but I'm not assuming that for now) */
1043
1044  num_hbins = range_list_size(file->hbins);
1045  for(i=0; i < num_hbins; i++)
1046  {
1047    hbin = (REGF_HBIN*)range_list_get(file->hbins, i)->data;
1048    if(regfi_find_root_nk(file, hbin->file_off+HBIN_HEADER_REC_SIZE, 
1049                          hbin->block_size-HBIN_HEADER_REC_SIZE, &root_offset))
1050    {
1051      nk = regfi_load_key(file, root_offset, true);
1052      break;
1053    }
1054  }
1055
1056  return nk;
1057}
1058
1059
1060/******************************************************************************
1061 *****************************************************************************/
1062void regfi_key_free(REGF_NK_REC* nk)
1063{
1064  uint32 i;
1065 
1066  if((nk->values != NULL) && (nk->values_off!=REGF_OFFSET_NONE))
1067  {
1068    for(i=0; i < nk->num_values; i++)
1069    {
1070      if(nk->values[i]->valuename != NULL)
1071        free(nk->values[i]->valuename);
1072      if(nk->values[i]->data != NULL)
1073        free(nk->values[i]->data);
1074      free(nk->values[i]);
1075    }
1076    free(nk->values);
1077  }
1078
1079  regfi_subkeylist_free(nk->subkeys);
1080
1081  if(nk->keyname != NULL)
1082    free(nk->keyname);
1083  if(nk->classname != NULL)
1084    free(nk->classname);
1085
1086  /* XXX: not freeing hbin because these are cached.  This needs to be reviewed. */
1087  /* XXX: not freeing sec_desc because these are cached.  This needs to be reviewed. */
1088  free(nk);
1089}
1090
1091
1092/******************************************************************************
1093 *****************************************************************************/
1094void regfi_subkeylist_free(REGF_SUBKEY_LIST* list)
1095{
1096  if(list != NULL)
1097  {
1098    free(list->elements);
1099    free(list);
1100  }
1101}
1102
1103
1104/******************************************************************************
1105 *****************************************************************************/
1106REGFI_ITERATOR* regfi_iterator_new(REGF_FILE* fh)
1107{
1108  REGF_NK_REC* root;
1109  REGFI_ITERATOR* ret_val = (REGFI_ITERATOR*)malloc(sizeof(REGFI_ITERATOR));
1110  if(ret_val == NULL)
1111    return NULL;
1112
1113  root = regfi_rootkey(fh);
1114  if(root == NULL)
1115  {
1116    free(ret_val);
1117    return NULL;
1118  }
1119
1120  ret_val->key_positions = void_stack_new(REGF_MAX_DEPTH);
1121  if(ret_val->key_positions == NULL)
1122  {
1123    free(ret_val);
1124    free(root);
1125    return NULL;
1126  }
1127
1128  /* This secret isn't very secret, but we don't need a good one.  This
1129   * secret is just designed to prevent someone from trying to blow our
1130   * caching and make things slow.
1131   */
1132  ret_val->sk_recs = lru_cache_create(127, 0x15DEAD05^time(NULL)
1133                                           ^(getpid()<<16)^(getppid()<<8),
1134                                      true);
1135
1136  ret_val->f = fh;
1137  ret_val->cur_key = root;
1138  ret_val->cur_subkey = 0;
1139  ret_val->cur_value = 0;
1140
1141  return ret_val;
1142}
1143
1144
1145/******************************************************************************
1146 *****************************************************************************/
1147void regfi_iterator_free(REGFI_ITERATOR* i)
1148{
1149  REGFI_ITER_POSITION* cur;
1150
1151  if(i->cur_key != NULL)
1152    regfi_key_free(i->cur_key);
1153
1154  while((cur = (REGFI_ITER_POSITION*)void_stack_pop(i->key_positions)) != NULL)
1155  {
1156    regfi_key_free(cur->nk);
1157    free(cur);
1158  }
1159 
1160  lru_cache_destroy(i->sk_recs);
1161
1162  free(i);
1163}
1164
1165
1166
1167/******************************************************************************
1168 *****************************************************************************/
1169/* XXX: some way of indicating reason for failure should be added. */
1170bool regfi_iterator_down(REGFI_ITERATOR* i)
1171{
1172  REGF_NK_REC* subkey;
1173  REGFI_ITER_POSITION* pos;
1174
1175  pos = (REGFI_ITER_POSITION*)malloc(sizeof(REGFI_ITER_POSITION));
1176  if(pos == NULL)
1177    return false;
1178
1179  subkey = (REGF_NK_REC*)regfi_iterator_cur_subkey(i);
1180  if(subkey == NULL)
1181  {
1182    free(pos);
1183    return false;
1184  }
1185
1186  pos->nk = i->cur_key;
1187  pos->cur_subkey = i->cur_subkey;
1188  if(!void_stack_push(i->key_positions, pos))
1189  {
1190    free(pos);
1191    regfi_key_free(subkey);
1192    return false;
1193  }
1194
1195  i->cur_key = subkey;
1196  i->cur_subkey = 0;
1197  i->cur_value = 0;
1198
1199  return true;
1200}
1201
1202
1203/******************************************************************************
1204 *****************************************************************************/
1205bool regfi_iterator_up(REGFI_ITERATOR* i)
1206{
1207  REGFI_ITER_POSITION* pos;
1208
1209  pos = (REGFI_ITER_POSITION*)void_stack_pop(i->key_positions);
1210  if(pos == NULL)
1211    return false;
1212
1213  regfi_key_free(i->cur_key);
1214  i->cur_key = pos->nk;
1215  i->cur_subkey = pos->cur_subkey;
1216  i->cur_value = 0;
1217  free(pos);
1218
1219  return true;
1220}
1221
1222
1223/******************************************************************************
1224 *****************************************************************************/
1225bool regfi_iterator_to_root(REGFI_ITERATOR* i)
1226{
1227  while(regfi_iterator_up(i))
1228    continue;
1229
1230  return true;
1231}
1232
1233
1234/******************************************************************************
1235 *****************************************************************************/
1236bool regfi_iterator_find_subkey(REGFI_ITERATOR* i, const char* subkey_name)
1237{
1238  REGF_NK_REC* subkey;
1239  bool found = false;
1240  uint32 old_subkey = i->cur_subkey;
1241 
1242  if(subkey_name == NULL)
1243    return false;
1244
1245  /* XXX: this alloc/free of each sub key might be a bit excessive */
1246  subkey = (REGF_NK_REC*)regfi_iterator_first_subkey(i);
1247  while((subkey != NULL) && (found == false))
1248  {
1249    if(subkey->keyname != NULL 
1250       && strcasecmp(subkey->keyname, subkey_name) == 0)
1251      found = true;
1252    else
1253    {
1254      regfi_key_free(subkey);
1255      subkey = (REGF_NK_REC*)regfi_iterator_next_subkey(i);
1256    }
1257  }
1258
1259  if(found == false)
1260  {
1261    i->cur_subkey = old_subkey;
1262    return false;
1263  }
1264
1265  regfi_key_free(subkey);
1266  return true;
1267}
1268
1269
1270/******************************************************************************
1271 *****************************************************************************/
1272bool regfi_iterator_walk_path(REGFI_ITERATOR* i, const char** path)
1273{
1274  uint32 x;
1275  if(path == NULL)
1276    return false;
1277
1278  for(x=0; 
1279      ((path[x] != NULL) && regfi_iterator_find_subkey(i, path[x])
1280       && regfi_iterator_down(i));
1281      x++)
1282  { continue; }
1283
1284  if(path[x] == NULL)
1285    return true;
1286 
1287  /* XXX: is this the right number of times? */
1288  for(; x > 0; x--)
1289    regfi_iterator_up(i);
1290 
1291  return false;
1292}
1293
1294
1295/******************************************************************************
1296 *****************************************************************************/
1297const REGF_NK_REC* regfi_iterator_cur_key(REGFI_ITERATOR* i)
1298{
1299  return i->cur_key;
1300}
1301
1302
1303/******************************************************************************
1304 *****************************************************************************/
1305const REGF_SK_REC* regfi_iterator_cur_sk(REGFI_ITERATOR* i)
1306{
1307  REGF_SK_REC* ret_val;
1308  REGF_HBIN* hbin;
1309  uint32 max_length, off;
1310
1311  if(i->cur_key == NULL)
1312    return NULL;
1313 
1314  /* First look if we have already parsed it */
1315  if((i->cur_key->sk_off!=REGF_OFFSET_NONE)
1316     && !(ret_val =(REGF_SK_REC*)lru_cache_find(i->sk_recs, 
1317                                                &i->cur_key->sk_off, 4)))
1318  {
1319    hbin = regfi_lookup_hbin(i->f, i->cur_key->sk_off);
1320
1321    if(hbin == NULL)
1322      return NULL;
1323
1324    off = i->cur_key->sk_off + REGF_BLOCKSIZE;
1325    max_length = hbin->block_size + hbin->file_off - off;
1326    ret_val = regfi_parse_sk(i->f, off, max_length, true);
1327    if(ret_val == NULL)
1328      return NULL;
1329
1330    ret_val->sk_off = i->cur_key->sk_off;
1331    lru_cache_update(i->sk_recs, &i->cur_key->sk_off, 4, ret_val);
1332  }
1333
1334  return ret_val;
1335}
1336
1337
1338
1339/******************************************************************************
1340 *****************************************************************************/
1341const REGF_NK_REC* regfi_iterator_first_subkey(REGFI_ITERATOR* i)
1342{
1343  i->cur_subkey = 0;
1344  return regfi_iterator_cur_subkey(i);
1345}
1346
1347
1348/******************************************************************************
1349 *****************************************************************************/
1350const REGF_NK_REC* regfi_iterator_cur_subkey(REGFI_ITERATOR* i)
1351{
1352  uint32 nk_offset;
1353
1354  /* see if there is anything left to report */
1355  if (!(i->cur_key) || (i->cur_key->subkeys_off==REGF_OFFSET_NONE)
1356      || (i->cur_subkey >= i->cur_key->num_subkeys))
1357    return NULL;
1358
1359  nk_offset = i->cur_key->subkeys->elements[i->cur_subkey].nk_off;
1360 
1361  return regfi_load_key(i->f, nk_offset+REGF_BLOCKSIZE, true);
1362}
1363
1364
1365/******************************************************************************
1366 *****************************************************************************/
1367/* XXX: some way of indicating reason for failure should be added. */
1368const REGF_NK_REC* regfi_iterator_next_subkey(REGFI_ITERATOR* i)
1369{
1370  const REGF_NK_REC* subkey;
1371
1372  i->cur_subkey++;
1373  subkey = regfi_iterator_cur_subkey(i);
1374
1375  if(subkey == NULL)
1376    i->cur_subkey--;
1377
1378  return subkey;
1379}
1380
1381
1382/******************************************************************************
1383 *****************************************************************************/
1384bool regfi_iterator_find_value(REGFI_ITERATOR* i, const char* value_name)
1385{
1386  const REGF_VK_REC* cur;
1387  bool found = false;
1388
1389  /* XXX: cur->valuename can be NULL in the registry. 
1390   *      Should we allow for a way to search for that?
1391   */
1392  if(value_name == NULL)
1393    return false;
1394
1395  cur = regfi_iterator_first_value(i);
1396  while((cur != NULL) && (found == false))
1397  {
1398    if((cur->valuename != NULL)
1399       && (strcasecmp(cur->valuename, value_name) == 0))
1400      found = true;
1401    else
1402      cur = regfi_iterator_next_value(i);
1403  }
1404
1405  return found;
1406}
1407
1408
1409/******************************************************************************
1410 *****************************************************************************/
1411const REGF_VK_REC* regfi_iterator_first_value(REGFI_ITERATOR* i)
1412{
1413  i->cur_value = 0;
1414  return regfi_iterator_cur_value(i);
1415}
1416
1417
1418/******************************************************************************
1419 *****************************************************************************/
1420const REGF_VK_REC* regfi_iterator_cur_value(REGFI_ITERATOR* i)
1421{
1422  REGF_VK_REC* ret_val = NULL;
1423  if(i->cur_value < i->cur_key->num_values)
1424    ret_val = i->cur_key->values[i->cur_value];
1425
1426  return ret_val;
1427}
1428
1429
1430/******************************************************************************
1431 *****************************************************************************/
1432const REGF_VK_REC* regfi_iterator_next_value(REGFI_ITERATOR* i)
1433{
1434  const REGF_VK_REC* ret_val;
1435
1436  i->cur_value++;
1437  ret_val = regfi_iterator_cur_value(i);
1438  if(ret_val == NULL)
1439    i->cur_value--;
1440
1441  return ret_val;
1442}
1443
1444
1445
1446/*******************************************************************
1447 * Computes the checksum of the registry file header.
1448 * buffer must be at least the size of an regf header (4096 bytes).
1449 *******************************************************************/
1450static uint32 regfi_compute_header_checksum(uint8* buffer)
1451{
1452  uint32 checksum, x;
1453  int i;
1454
1455  /* XOR of all bytes 0x0000 - 0x01FB */
1456
1457  checksum = x = 0;
1458 
1459  for ( i=0; i<0x01FB; i+=4 ) {
1460    x = IVAL(buffer, i );
1461    checksum ^= x;
1462  }
1463 
1464  return checksum;
1465}
1466
1467
1468/*******************************************************************
1469 * XXX: Add way to return more detailed error information.
1470 *******************************************************************/
1471REGF_FILE* regfi_parse_regf(int fd, bool strict)
1472{
1473  uint8 file_header[REGF_BLOCKSIZE];
1474  uint32 length;
1475  uint32 file_length;
1476  struct stat sbuf;
1477  REGF_FILE* ret_val;
1478
1479  /* Determine file length.  Must be at least big enough
1480   * for the header and one hbin.
1481   */
1482  if (fstat(fd, &sbuf) == -1)
1483    return NULL;
1484  file_length = sbuf.st_size;
1485  if(file_length < REGF_BLOCKSIZE+REGF_ALLOC_BLOCK)
1486    return NULL;
1487
1488  ret_val = (REGF_FILE*)zalloc(sizeof(REGF_FILE));
1489  if(ret_val == NULL)
1490    return NULL;
1491
1492  ret_val->fd = fd;
1493  ret_val->file_length = file_length;
1494
1495  length = REGF_BLOCKSIZE;
1496  if((regfi_read(fd, file_header, &length)) != 0 
1497     || length != REGF_BLOCKSIZE)
1498  {
1499    free(ret_val);
1500    return NULL;
1501  }
1502
1503  ret_val->checksum = IVAL(file_header, 0x1FC);
1504  ret_val->computed_checksum = regfi_compute_header_checksum(file_header);
1505  if (strict && (ret_val->checksum != ret_val->computed_checksum))
1506  {
1507    free(ret_val);
1508    return NULL;
1509  }
1510
1511  memcpy(ret_val->magic, file_header, 4);
1512  if(strict && (memcmp(ret_val->magic, "regf", 4) != 0))
1513  {
1514    free(ret_val);
1515    return NULL;
1516  }
1517 
1518  ret_val->unknown1 = IVAL(file_header, 0x4);
1519  ret_val->unknown2 = IVAL(file_header, 0x8);
1520
1521  ret_val->mtime.low = IVAL(file_header, 0xC);
1522  ret_val->mtime.high = IVAL(file_header, 0x10);
1523
1524  ret_val->unknown3 = IVAL(file_header, 0x14);
1525  ret_val->unknown4 = IVAL(file_header, 0x18);
1526  ret_val->unknown5 = IVAL(file_header, 0x1C);
1527  ret_val->unknown6 = IVAL(file_header, 0x20);
1528 
1529  ret_val->data_offset = IVAL(file_header, 0x24);
1530  ret_val->last_block = IVAL(file_header, 0x28);
1531
1532  ret_val->unknown7 = IVAL(file_header, 0x2C);
1533
1534  return ret_val;
1535}
1536
1537
1538
1539/*******************************************************************
1540 * Given real file offset, read and parse the hbin at that location
1541 * along with it's associated cells.
1542 *******************************************************************/
1543/* XXX: Need a way to return types of errors.
1544 */
1545REGF_HBIN* regfi_parse_hbin(REGF_FILE* file, uint32 offset, bool strict)
1546{
1547  REGF_HBIN *hbin;
1548  uint8 hbin_header[HBIN_HEADER_REC_SIZE];
1549  uint32 length;
1550 
1551  if(offset >= file->file_length)
1552    return NULL;
1553
1554  if(lseek(file->fd, offset, SEEK_SET) == -1)
1555    return NULL;
1556
1557  length = HBIN_HEADER_REC_SIZE;
1558  if((regfi_read(file->fd, hbin_header, &length) != 0) 
1559     || length != HBIN_HEADER_REC_SIZE)
1560    return NULL;
1561
1562
1563  if(lseek(file->fd, offset, SEEK_SET) == -1)
1564    return NULL;
1565
1566  if(!(hbin = (REGF_HBIN*)zalloc(sizeof(REGF_HBIN)))) 
1567    return NULL;
1568  hbin->file_off = offset;
1569
1570  memcpy(hbin->magic, hbin_header, 4);
1571  if(strict && (memcmp(hbin->magic, "hbin", 4) != 0))
1572  {
1573    free(hbin);
1574    return NULL;
1575  }
1576
1577  hbin->first_hbin_off = IVAL(hbin_header, 0x4);
1578  hbin->block_size = IVAL(hbin_header, 0x8);
1579  /* this should be the same thing as hbin->block_size but just in case */
1580  hbin->next_block = IVAL(hbin_header, 0x1C);
1581
1582
1583  /* Ensure the block size is a multiple of 0x1000 and doesn't run off
1584   * the end of the file.
1585   */
1586  /* XXX: This may need to be relaxed for dealing with
1587   *      partial or corrupt files.
1588   */
1589  if((offset + hbin->block_size > file->file_length)
1590     || (hbin->block_size & 0xFFFFF000) != hbin->block_size)
1591  {
1592    free(hbin);
1593    return NULL;
1594  }
1595
1596  return hbin;
1597}
1598
1599
1600/*******************************************************************
1601 *******************************************************************/
1602REGF_NK_REC* regfi_parse_nk(REGF_FILE* file, uint32 offset, 
1603                            uint32 max_size, bool strict)
1604{
1605  uint8 nk_header[REGFI_NK_MIN_LENGTH];
1606  REGF_NK_REC* ret_val;
1607  uint32 length;
1608  uint32 cell_length;
1609  bool unalloc = false;
1610
1611  if(!regfi_parse_cell(file->fd, offset, nk_header, REGFI_NK_MIN_LENGTH,
1612                       &cell_length, &unalloc))
1613     return NULL;
1614 
1615  /* A bit of validation before bothering to allocate memory */
1616  if((nk_header[0x0] != 'n') || (nk_header[0x1] != 'k'))
1617    return NULL;
1618
1619  ret_val = (REGF_NK_REC*)zalloc(sizeof(REGF_NK_REC));
1620  if(ret_val == NULL)
1621    return NULL;
1622
1623  ret_val->offset = offset;
1624  ret_val->cell_size = cell_length;
1625
1626  if(ret_val->cell_size > max_size)
1627    ret_val->cell_size = max_size & 0xFFFFFFF8;
1628  if((ret_val->cell_size < REGFI_NK_MIN_LENGTH) 
1629     || (strict && ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8)))
1630  {
1631    free(ret_val);
1632    return NULL;
1633  }
1634
1635  ret_val->magic[0] = nk_header[0x0];
1636  ret_val->magic[1] = nk_header[0x1];
1637  ret_val->key_type = SVAL(nk_header, 0x2);
1638  if((ret_val->key_type != NK_TYPE_NORMALKEY)
1639     && (ret_val->key_type != NK_TYPE_ROOTKEY1) 
1640     && (ret_val->key_type != NK_TYPE_ROOTKEY2)
1641     && (ret_val->key_type != NK_TYPE_LINKKEY)
1642     && (ret_val->key_type != NK_TYPE_UNKNOWN1))
1643  {
1644    free(ret_val);
1645    return NULL;
1646  }
1647
1648  ret_val->mtime.low = IVAL(nk_header, 0x4);
1649  ret_val->mtime.high = IVAL(nk_header, 0x8);
1650  /* If the key is unallocated and the MTIME is earlier than Jan 1, 1990
1651   * or later than Jan 1, 2290, we consider this a bad key.  This helps
1652   * weed out some false positives during deleted data recovery.
1653   */
1654  if(unalloc
1655     && ((ret_val->mtime.high < REGFI_MTIME_MIN_HIGH
1656          && ret_val->mtime.low < REGFI_MTIME_MIN_LOW)
1657         || (ret_val->mtime.high > REGFI_MTIME_MAX_HIGH
1658             && ret_val->mtime.low > REGFI_MTIME_MAX_LOW)))
1659    return NULL;
1660
1661  ret_val->unknown1 = IVAL(nk_header, 0xC);
1662  ret_val->parent_off = IVAL(nk_header, 0x10);
1663  ret_val->num_subkeys = IVAL(nk_header, 0x14);
1664  ret_val->unknown2 = IVAL(nk_header, 0x18);
1665  ret_val->subkeys_off = IVAL(nk_header, 0x1C);
1666  ret_val->unknown3 = IVAL(nk_header, 0x20);
1667  ret_val->num_values = IVAL(nk_header, 0x24);
1668  ret_val->values_off = IVAL(nk_header, 0x28);
1669  ret_val->sk_off = IVAL(nk_header, 0x2C);
1670  ret_val->classname_off = IVAL(nk_header, 0x30);
1671
1672  ret_val->max_bytes_subkeyname = IVAL(nk_header, 0x34);
1673  ret_val->max_bytes_subkeyclassname = IVAL(nk_header, 0x38);
1674  ret_val->max_bytes_valuename = IVAL(nk_header, 0x3C);
1675  ret_val->max_bytes_value = IVAL(nk_header, 0x40);
1676  ret_val->unk_index = IVAL(nk_header, 0x44);
1677
1678  ret_val->name_length = SVAL(nk_header, 0x48);
1679  ret_val->classname_length = SVAL(nk_header, 0x4A);
1680
1681
1682  if(ret_val->name_length + REGFI_NK_MIN_LENGTH > ret_val->cell_size)
1683  {
1684    if(strict)
1685    {
1686      free(ret_val);
1687      return NULL;
1688    }
1689    else
1690      ret_val->name_length = ret_val->cell_size - REGFI_NK_MIN_LENGTH;
1691  }
1692  else if (unalloc)
1693  { /* Truncate cell_size if it's much larger than the apparent total record length. */
1694    /* Round up to the next multiple of 8 */
1695    length = (ret_val->name_length + REGFI_NK_MIN_LENGTH) & 0xFFFFFFF8;
1696    if(length < ret_val->name_length + REGFI_NK_MIN_LENGTH)
1697      length+=8;
1698
1699    /* If cell_size is still greater, truncate. */
1700    if(length < ret_val->cell_size)
1701      ret_val->cell_size = length;
1702  }
1703
1704  ret_val->keyname = (char*)zalloc(sizeof(char)*(ret_val->name_length+1));
1705  if(ret_val->keyname == NULL)
1706  {
1707    free(ret_val);
1708    return NULL;
1709  }
1710
1711  /* Don't need to seek, should be at the right offset */
1712  length = ret_val->name_length;
1713  if((regfi_read(file->fd, (uint8*)ret_val->keyname, &length) != 0)
1714     || length != ret_val->name_length)
1715  {
1716    free(ret_val->keyname);
1717    free(ret_val);
1718    return NULL;
1719  }
1720  ret_val->keyname[ret_val->name_length] = '\0';
1721
1722  if(ret_val->classname_off != REGF_OFFSET_NONE)
1723  {
1724    ret_val->classname
1725      = regfi_parse_classname(file, ret_val->classname_off+REGF_BLOCKSIZE,
1726                              &ret_val->classname_length, strict);
1727    /*
1728    if(strict && ret_val->classname == NULL)
1729        return NULL;
1730    */
1731  }
1732
1733  return ret_val;
1734}
1735
1736
1737/*******************************************************************/
1738/* XXX: Not currently validating against hbin length.              */
1739/*******************************************************************/
1740char* regfi_parse_classname(REGF_FILE* file, uint32 offset, 
1741                            uint16* name_length, bool strict)
1742{
1743  char* ret_val = NULL;
1744  uint32 length;
1745  uint32 cell_length;
1746  bool unalloc = false;
1747
1748  if(*name_length > 0 && offset != REGF_OFFSET_NONE
1749     && offset == (offset & 0xFFFFFFF8))
1750  {   
1751    if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc))
1752        return NULL;
1753
1754    if(cell_length < *name_length)
1755    {
1756      if(strict)
1757        return NULL;
1758      *name_length = cell_length & 0xFFFFFFF8;
1759    }
1760   
1761    ret_val = (char*)zalloc(*name_length);
1762    if(ret_val != NULL)
1763    {
1764      length = *name_length;
1765      if((regfi_read(file->fd, (uint8*)ret_val, &length) != 0)
1766         || length != *name_length)
1767      {
1768        free(ret_val);
1769        return NULL;
1770      }
1771
1772      /*printf("==> cell_length=%d, classname_length=%d, max_bytes_subkeyclassname=%d\n", cell_length, ret_val->classname_length, ret_val->max_bytes_subkeyclassname);*/
1773    }
1774  }
1775
1776  return ret_val;
1777}
1778
1779
1780/*******************************************************************
1781 *******************************************************************/
1782REGF_VK_REC* regfi_parse_vk(REGF_FILE* file, uint32 offset, 
1783                            uint32 max_size, bool strict)
1784{
1785  REGF_VK_REC* ret_val;
1786  uint8 vk_header[REGFI_VK_MIN_LENGTH];
1787  uint32 raw_data_size, length, cell_length;
1788  bool unalloc = false;
1789
1790  if(!regfi_parse_cell(file->fd, offset, vk_header, REGFI_VK_MIN_LENGTH,
1791                       &cell_length, &unalloc))
1792    return NULL;
1793
1794  ret_val = (REGF_VK_REC*)zalloc(sizeof(REGF_VK_REC));
1795  if(ret_val == NULL)
1796    return NULL;
1797
1798  ret_val->offset = offset;
1799  ret_val->cell_size = cell_length;
1800
1801  if(ret_val->cell_size > max_size)
1802    ret_val->cell_size = max_size & 0xFFFFFFF8;
1803  if((ret_val->cell_size < REGFI_VK_MIN_LENGTH) 
1804     || ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8))
1805  {
1806    free(ret_val);
1807    return NULL;
1808  }
1809
1810  ret_val->magic[0] = vk_header[0x0];
1811  ret_val->magic[1] = vk_header[0x1];
1812  if((ret_val->magic[0] != 'v') || (ret_val->magic[1] != 'k'))
1813  {
1814    /* XXX: This does not account for deleted keys under Win2K which
1815     *      often have this (and the name length) overwritten with
1816     *      0xFFFF.
1817     */
1818    free(ret_val);
1819    return NULL;
1820  }
1821
1822  ret_val->name_length = SVAL(vk_header, 0x2);
1823  raw_data_size = IVAL(vk_header, 0x4);
1824  ret_val->data_size = raw_data_size & ~VK_DATA_IN_OFFSET;
1825  ret_val->data_in_offset = (bool)(raw_data_size & VK_DATA_IN_OFFSET);
1826  ret_val->data_off = IVAL(vk_header, 0x8);
1827  ret_val->type = IVAL(vk_header, 0xC);
1828  ret_val->flag = SVAL(vk_header, 0x10);
1829  ret_val->unknown1 = SVAL(vk_header, 0x12);
1830
1831  if(ret_val->flag & VK_FLAG_NAME_PRESENT)
1832  {
1833    if(ret_val->name_length + REGFI_VK_MIN_LENGTH + 4 > ret_val->cell_size)
1834    {
1835      if(strict)
1836      {
1837        free(ret_val);
1838        return NULL;
1839      }
1840      else
1841        ret_val->name_length = ret_val->cell_size - REGFI_VK_MIN_LENGTH - 4;
1842    }
1843
1844    /* Round up to the next multiple of 8 */
1845    cell_length = (ret_val->name_length + REGFI_VK_MIN_LENGTH + 4) & 0xFFFFFFF8;
1846    if(cell_length < ret_val->name_length + REGFI_VK_MIN_LENGTH + 4)
1847      cell_length+=8;
1848
1849    ret_val->valuename = (char*)zalloc(sizeof(char)*(ret_val->name_length+1));
1850    if(ret_val->valuename == NULL)
1851    {
1852      free(ret_val);
1853      return NULL;
1854    }
1855
1856    length = ret_val->name_length;
1857    if((regfi_read(file->fd, (uint8*)ret_val->valuename, &length) != 0)
1858       || length != ret_val->name_length)
1859    {
1860      free(ret_val->valuename);
1861      free(ret_val);
1862      return NULL;
1863    }
1864    ret_val->valuename[ret_val->name_length] = '\0';
1865  }
1866  else
1867    cell_length = REGFI_VK_MIN_LENGTH + 4;
1868
1869  if(unalloc)
1870  {
1871    /* If cell_size is still greater, truncate. */
1872    if(cell_length < ret_val->cell_size)
1873      ret_val->cell_size = cell_length;
1874  }
1875
1876  if(ret_val->data_size == 0)
1877    ret_val->data = NULL;
1878  else
1879  {
1880    ret_val->data = regfi_parse_data(file, ret_val->data_off+REGF_BLOCKSIZE,
1881                                     raw_data_size, strict);
1882    if(strict && (ret_val->data == NULL))
1883    {
1884      free(ret_val->valuename);
1885      free(ret_val);
1886      return NULL;
1887    }
1888  }
1889
1890  return ret_val;
1891}
1892
1893
1894uint8* regfi_parse_data(REGF_FILE* file, uint32 offset, uint32 length, bool strict)
1895{
1896  uint8* ret_val;
1897  uint32 read_length, cell_length;
1898  uint8 i;
1899  bool unalloc;
1900
1901  /* The data is stored in the offset if the size <= 4 */
1902  if (length & VK_DATA_IN_OFFSET)
1903  {
1904    length = length & ~VK_DATA_IN_OFFSET;
1905    if(length > 4)
1906      return NULL;
1907
1908    if((ret_val = (uint8*)zalloc(sizeof(uint8)*length)) == NULL)
1909      return NULL;
1910
1911    offset = offset - REGF_BLOCKSIZE;
1912    for(i = 0; i < length; i++)
1913      ret_val[i] = (uint8)((offset >> i*8) & 0xFF);
1914  }
1915  else
1916  {
1917    if(!regfi_parse_cell(file->fd, offset, NULL, 0,
1918                         &cell_length, &unalloc))
1919      return NULL;
1920
1921    if((cell_length & 0xFFFFFFF8) != cell_length)
1922      return NULL;
1923
1924    if(cell_length - 4 < length)
1925    {
1926      /* XXX: This strict condition has been triggered in multiple registries.
1927       *      Not sure the cause, but the data length values are very large,
1928       *      such as 53392.
1929       */
1930      if(strict)
1931        return NULL;
1932      else
1933        length = cell_length - 4;
1934    }
1935
1936    /* XXX: There is currently no check to ensure the data
1937     *      cell doesn't cross HBIN boundary.
1938     */
1939
1940    if((ret_val = (uint8*)zalloc(sizeof(uint8)*length)) == NULL)
1941      return NULL;
1942
1943    read_length = length;
1944    if((regfi_read(file->fd, ret_val, &read_length) != 0) 
1945       || read_length != length)
1946    {
1947      free(ret_val);
1948      return NULL;
1949    }
1950  }
1951
1952  return ret_val;
1953}
1954
1955
1956range_list* regfi_parse_unalloc_cells(REGF_FILE* file)
1957{
1958  range_list* ret_val;
1959  REGF_HBIN* hbin;
1960  const range_list_element* hbins_elem;
1961  uint32 i, num_hbins, curr_off, cell_len;
1962  bool is_unalloc;
1963
1964  ret_val = range_list_new();
1965  if(ret_val == NULL)
1966    return NULL;
1967
1968  num_hbins = range_list_size(file->hbins);
1969  for(i=0; i<num_hbins; i++)
1970  {
1971    hbins_elem = range_list_get(file->hbins, i);
1972    if(hbins_elem == NULL)
1973      break;
1974    hbin = (REGF_HBIN*)hbins_elem->data;
1975
1976    curr_off = HBIN_HEADER_REC_SIZE;
1977    while(curr_off < hbin->block_size)
1978    {
1979      if(!regfi_parse_cell(file->fd, hbin->file_off+curr_off, NULL, 0,
1980                           &cell_len, &is_unalloc))
1981        break;
1982     
1983      if((cell_len == 0) || ((cell_len & 0xFFFFFFF8) != cell_len))
1984        /* XXX: should report an error here. */
1985        break;
1986     
1987      /* for some reason the record_size of the last record in
1988         an hbin block can extend past the end of the block
1989         even though the record fits within the remaining
1990         space....aaarrrgggghhhhhh */ 
1991      if(curr_off + cell_len >= hbin->block_size)
1992        cell_len = hbin->block_size - curr_off;
1993     
1994      if(is_unalloc)
1995        range_list_add(ret_val, hbin->file_off+curr_off, 
1996                       cell_len, NULL);
1997     
1998      curr_off = curr_off+cell_len;
1999    }
2000  }
2001
2002  return ret_val;
2003}
Note: See TracBrowser for help on using the repository browser.