/* * Branched from Samba project Subversion repository, version #7470: * http://viewcvs.samba.org/cgi-bin/viewcvs.cgi/trunk/source/registry/regfio.c?rev=7470&view=auto * * Unix SMB/CIFS implementation. * Windows NT registry parsing library * * Copyright (C) 2005-2008 Timothy D. Morgan * Copyright (C) 2005 Gerald (Jerry) Carter * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * $Id: regfi.c 127 2008-09-01 23:20:50Z tim $ */ #include "../include/regfi.h" /* Registry types mapping */ const unsigned int regfi_num_reg_types = 12; static const char* regfi_type_names[] = {"NONE", "SZ", "EXPAND_SZ", "BINARY", "DWORD", "DWORD_BE", "LINK", "MULTI_SZ", "RSRC_LIST", "RSRC_DESC", "RSRC_REQ_LIST", "QWORD"}; /* Returns NULL on error */ const char* regfi_type_val2str(unsigned int val) { if(val == REG_KEY) return "KEY"; if(val >= regfi_num_reg_types) return NULL; return regfi_type_names[val]; } /* Returns -1 on error */ int regfi_type_str2val(const char* str) { int i; if(strcmp("KEY", str) == 0) return REG_KEY; for(i=0; i < regfi_num_reg_types; i++) if (strcmp(regfi_type_names[i], str) == 0) return i; if(strcmp("DWORD_LE", str) == 0) return REG_DWORD_LE; return -1; } /* Security descriptor parsing functions */ const char* regfi_ace_type2str(uint8 type) { static const char* map[7] = {"ALLOW", "DENY", "AUDIT", "ALARM", "ALLOW CPD", "OBJ ALLOW", "OBJ DENY"}; if(type < 7) return map[type]; else /* XXX: would be nice to return the unknown integer value. * However, as it is a const string, it can't be free()ed later on, * so that would need to change. */ return "UNKNOWN"; } /* XXX: need a better reference on the meaning of each flag. */ /* For more info, see: * http://msdn2.microsoft.com/en-us/library/aa772242.aspx */ char* regfi_ace_flags2str(uint8 flags) { static const char* flag_map[32] = { "OI", /* Object Inherit */ "CI", /* Container Inherit */ "NP", /* Non-Propagate */ "IO", /* Inherit Only */ "IA", /* Inherited ACE */ NULL, NULL, NULL, }; char* ret_val = malloc(35*sizeof(char)); char* fo = ret_val; uint32 i; uint8 f; if(ret_val == NULL) return NULL; fo[0] = '\0'; if (!flags) return ret_val; for(i=0; i < 8; i++) { f = (1<num_auths; char* ret_val = malloc(size); if(ret_val == NULL) return NULL; if(comps > MAXSUBAUTHS) comps = MAXSUBAUTHS; left -= sprintf(ret_val, "S-%u-%u", sid->sid_rev_num, sid->id_auth[5]); for (i = 0; i < comps; i++) left -= snprintf(ret_val+(size-left), left, "-%u", sid->sub_auths[i]); return ret_val; } char* regfi_get_acl(SEC_ACL* acl) { uint32 i, extra, size = 0; const char* type_str; char* flags_str; char* perms_str; char* sid_str; char* ace_delim = ""; char* ret_val = NULL; char* tmp_val = NULL; bool failed = false; char field_delim = ':'; for (i = 0; i < acl->num_aces && !failed; i++) { sid_str = regfi_sid2str(&acl->ace[i].trustee); type_str = regfi_ace_type2str(acl->ace[i].type); perms_str = regfi_ace_perms2str(acl->ace[i].info.mask); flags_str = regfi_ace_flags2str(acl->ace[i].flags); if(flags_str != NULL && perms_str != NULL && type_str != NULL && sid_str != NULL) { /* XXX: this is slow */ extra = strlen(sid_str) + strlen(type_str) + strlen(perms_str) + strlen(flags_str)+5; tmp_val = realloc(ret_val, size+extra); if(tmp_val == NULL) { free(ret_val); failed = true; } else { ret_val = tmp_val; size += snprintf(ret_val+size, extra, "%s%s%c%s%c%s%c%s", ace_delim,sid_str, field_delim,type_str, field_delim,perms_str, field_delim,flags_str); ace_delim = "|"; } } else failed = true; if(sid_str != NULL) free(sid_str); if(sid_str != NULL) free(perms_str); if(sid_str != NULL) free(flags_str); } return ret_val; } char* regfi_get_sacl(SEC_DESC *sec_desc) { if (sec_desc->sacl) return regfi_get_acl(sec_desc->sacl); else return NULL; } char* regfi_get_dacl(SEC_DESC *sec_desc) { if (sec_desc->dacl) return regfi_get_acl(sec_desc->dacl); else return NULL; } char* regfi_get_owner(SEC_DESC *sec_desc) { return regfi_sid2str(sec_desc->owner_sid); } char* regfi_get_group(SEC_DESC *sec_desc) { return regfi_sid2str(sec_desc->grp_sid); } /***************************************************************************** * This function is just like read(2), except that it continues to * re-try reading from the file descriptor if EINTR or EAGAIN is received. * regfi_read will attempt to read length bytes from fd and write them to buf. * * On success, 0 is returned. Upon failure, an errno code is returned. * * The number of bytes successfully read is returned through the length * parameter by reference. If both the return value and length parameter are * returned as 0, then EOF was encountered immediately *****************************************************************************/ uint32 regfi_read(int fd, uint8* buf, uint32* length) { uint32 rsize = 0; uint32 rret = 0; do { rret = read(fd, buf + rsize, *length - rsize); if(rret > 0) rsize += rret; }while(*length - rsize > 0 && (rret > 0 || (rret == -1 && (errno == EAGAIN || errno == EINTR)))); *length = rsize; if (rret == -1 && errno != EINTR && errno != EAGAIN) return errno; return 0; } /***************************************************************************** * *****************************************************************************/ bool regfi_parse_cell(int fd, uint32 offset, uint8* hdr, uint32 hdr_len, uint32* cell_length, bool* unalloc) { uint32 length; int32 raw_length; uint8 tmp[4]; if(lseek(fd, offset, SEEK_SET) == -1) return false; length = 4; if((regfi_read(fd, tmp, &length) != 0) || length != 4) return false; raw_length = IVALS(tmp, 0); if(raw_length < 0) { (*cell_length) = raw_length*(-1); (*unalloc) = false; } else { (*cell_length) = raw_length; (*unalloc) = true; } if(*cell_length - 4 < hdr_len) return false; if(hdr_len > 0) { length = hdr_len; if((regfi_read(fd, hdr, &length) != 0) || length != hdr_len) return false; } return true; } /******************************************************************* * Given an offset and an hbin, is the offset within that hbin? * The offset is a virtual file offset. *******************************************************************/ static bool regfi_offset_in_hbin(REGF_HBIN* hbin, uint32 offset) { if(!hbin) return false; if((offset > hbin->first_hbin_off) && (offset < (hbin->first_hbin_off + hbin->block_size))) return true; return false; } /******************************************************************* * Given a virtual offset, and receive the correpsonding HBIN * block for it. NULL if one doesn't exist. *******************************************************************/ REGF_HBIN* regfi_lookup_hbin(REGF_FILE* file, uint32 offset) { return (REGF_HBIN*)range_list_find_data(file->hbins, offset+REGF_BLOCKSIZE); } /******************************************************************* *******************************************************************/ REGF_SUBKEY_LIST* regfi_merge_subkeylists(uint16 num_lists, REGF_SUBKEY_LIST** lists, bool strict) { uint32 i,j,k; REGF_SUBKEY_LIST* ret_val = (REGF_SUBKEY_LIST*)zalloc(sizeof(REGF_SUBKEY_LIST)); if(ret_val == NULL || lists == NULL) return NULL; /* Obtain total number of elements */ ret_val->num_keys = 0; for(i=0; i < num_lists; i++) { if(lists[i] == NULL) { ret_val->num_keys = 0; break; } ret_val->num_keys += lists[i]->num_keys; } if(ret_val->num_keys > 0) { ret_val->elements = (REGF_SUBKEY_LIST_ELEM*)zalloc(sizeof(REGF_SUBKEY_LIST_ELEM) * ret_val->num_keys); k=0; if(ret_val->elements != NULL) { for(i=0; inum_keys; j++) { ret_val->elements[k].hash=lists[i]->elements[j].hash; ret_val->elements[k++].nk_off=lists[i]->elements[j].nk_off; } } } for(i=0; i < num_lists; i++) regfi_subkeylist_free(lists[i]); free(lists); return ret_val; } /******************************************************************* *******************************************************************/ REGF_SUBKEY_LIST* regfi_load_subkeylist(REGF_FILE* file, uint32 offset, uint32 num_keys, uint32 max_size, bool strict) { REGF_SUBKEY_LIST* ret_val; REGF_SUBKEY_LIST** sublists; REGF_HBIN* sublist_hbin; uint32 i, cell_length, length, num_sublists, off, max_length; uint8* hashes; uint8 buf[REGFI_SUBKEY_LIST_MIN_LEN]; bool unalloc; if(!regfi_parse_cell(file->fd, offset, buf, REGFI_SUBKEY_LIST_MIN_LEN, &cell_length, &unalloc)) return NULL; if(cell_length > max_size) { if(strict) return NULL; cell_length = max_size & 0xFFFFFFF8; } if(buf[0] == 'r' && buf[1] == 'i') { num_sublists = SVAL(buf, 0x2); /* XXX: check cell_length vs num_sublists vs max_length */ length = num_sublists*sizeof(uint32); hashes = (uint8*)zalloc(length); if(hashes == NULL) return NULL; if(regfi_read(file->fd, hashes, &length) != 0 || length != num_sublists*sizeof(uint32)) { free(hashes); return NULL; } sublists = (REGF_SUBKEY_LIST**)zalloc(num_sublists*sizeof(REGF_SUBKEY_LIST*)); for(i=0; i < num_sublists; i++) { off = IVAL(hashes, i*4)+REGF_BLOCKSIZE; sublist_hbin = regfi_lookup_hbin(file, IVAL(hashes, i*4)); max_length = sublist_hbin->block_size + sublist_hbin->file_off - off; /* XXX: Need to add a recursion depth limit of some kind. */ sublists[i] = regfi_load_subkeylist(file, off, 0, max_length, strict); } return regfi_merge_subkeylists(num_sublists, sublists, strict); } ret_val = (REGF_SUBKEY_LIST*)zalloc(sizeof(REGF_SUBKEY_LIST)); if(ret_val == NULL) return NULL; ret_val->offset = offset; ret_val->cell_size = cell_length; if((buf[0] != 'l' || buf[1] != 'f') && (buf[0] != 'l' || buf[1] != 'h')) { /*printf("DEBUG: lf->header=%c%c\n", buf[0], buf[1]);*/ free(ret_val); return NULL; } ret_val->magic[0] = buf[0]; ret_val->magic[1] = buf[1]; ret_val->num_keys = SVAL(buf, 0x2); if(num_keys != ret_val->num_keys) { /* Not sure which should be authoritative, the number from the * NK record, or the number in the subkey list. Go with the larger * of the two to ensure all keys are found, since in 'ri' records, * there is no authoritative parent count for a leaf subkey list. * Note the length checks on the cell later ensure that there won't * be any critical errors. */ if(num_keys < ret_val->num_keys) num_keys = ret_val->num_keys; else ret_val->num_keys = num_keys; } if(cell_length - REGFI_SUBKEY_LIST_MIN_LEN - sizeof(uint32) < ret_val->num_keys*sizeof(REGF_SUBKEY_LIST_ELEM)) return NULL; length = sizeof(REGF_SUBKEY_LIST_ELEM)*ret_val->num_keys; ret_val->elements = (REGF_SUBKEY_LIST_ELEM*)zalloc(length); if(ret_val->elements == NULL) { free(ret_val); return NULL; } hashes = (uint8*)zalloc(length); if(hashes == NULL) { free(ret_val->elements); free(ret_val); return NULL; } if(regfi_read(file->fd, hashes, &length) != 0 || length != sizeof(REGF_SUBKEY_LIST_ELEM)*ret_val->num_keys) { free(ret_val->elements); free(ret_val); return NULL; } for (i=0; i < ret_val->num_keys; i++) { ret_val->elements[i].nk_off = IVAL(hashes, i*sizeof(REGF_SUBKEY_LIST_ELEM)); ret_val->elements[i].hash = IVAL(hashes, i*sizeof(REGF_SUBKEY_LIST_ELEM)+4); } free(hashes); return ret_val; } /******************************************************************* *******************************************************************/ REGF_SK_REC* regfi_parse_sk(REGF_FILE* file, uint32 offset, uint32 max_size, bool strict) { REGF_SK_REC* ret_val; uint32 cell_length, length; prs_struct ps; uint8 sk_header[REGFI_SK_MIN_LENGTH]; bool unalloc = false; if(!regfi_parse_cell(file->fd, offset, sk_header, REGFI_SK_MIN_LENGTH, &cell_length, &unalloc)) return NULL; if(sk_header[0] != 's' || sk_header[1] != 'k') return NULL; ret_val = (REGF_SK_REC*)zalloc(sizeof(REGF_SK_REC)); if(ret_val == NULL) return NULL; ret_val->offset = offset; /* XXX: Is there a way to be more conservative (shorter) with * cell length when cell is unallocated? */ ret_val->cell_size = cell_length; if(ret_val->cell_size > max_size) ret_val->cell_size = max_size & 0xFFFFFFF8; if((ret_val->cell_size < REGFI_SK_MIN_LENGTH) || (strict && ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8))) { free(ret_val); return NULL; } ret_val->magic[0] = sk_header[0]; ret_val->magic[1] = sk_header[1]; /* XXX: Can additional validation be added here? */ ret_val->unknown_tag = SVAL(sk_header, 0x2); ret_val->prev_sk_off = IVAL(sk_header, 0x4); ret_val->next_sk_off = IVAL(sk_header, 0x8); ret_val->ref_count = IVAL(sk_header, 0xC); ret_val->desc_size = IVAL(sk_header, 0x10); if(ret_val->desc_size + REGFI_SK_MIN_LENGTH > ret_val->cell_size) { free(ret_val); return NULL; } /* XXX: need to get rid of this, but currently the security descriptor * code depends on the ps structure. */ if(!prs_init(&ps, ret_val->desc_size, NULL, UNMARSHALL)) { free(ret_val); return NULL; } length = ret_val->desc_size; if(regfi_read(file->fd, (uint8*)ps.data_p, &length) != 0 || length != ret_val->desc_size) { free(ret_val); return NULL; } if (!sec_io_desc("sec_desc", &ret_val->sec_desc, &ps, 0)) { free(ret_val); return NULL; } free(ps.data_p); return ret_val; } uint32* regfi_parse_valuelist(REGF_FILE* file, uint32 offset, uint32 num_values, bool strict) { uint32* ret_val; uint32 i, cell_length, length, read_len; bool unalloc; if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc)) return NULL; if(cell_length != (cell_length & 0xFFFFFFF8)) { if(strict) return NULL; cell_length = cell_length & 0xFFFFFFF8; } if((num_values * sizeof(uint32)) > cell_length-sizeof(uint32)) return NULL; read_len = num_values*sizeof(uint32); ret_val = (uint32*)malloc(read_len); if(ret_val == NULL) return NULL; length = read_len; if((regfi_read(file->fd, (uint8*)ret_val, &length) != 0) || length != read_len) { free(ret_val); return NULL; } for(i=0; i < num_values; i++) { /* Fix endianness */ ret_val[i] = IVAL(&ret_val[i], 0); /* Validate the first num_values values to ensure they make sense */ if(strict) { if((ret_val[i] + REGF_BLOCKSIZE > file->file_length) || ((ret_val[i] & 0xFFFFFFF8) != ret_val[i])) { free(ret_val); return NULL; } } } return ret_val; } /****************************************************************************** * If !strict, the list may contain NULLs, VK records may point to NULL. ******************************************************************************/ REGF_VK_REC** regfi_load_valuelist(REGF_FILE* file, uint32 offset, uint32 num_values, uint32 max_size, bool strict) { REGF_VK_REC** ret_val; REGF_HBIN* hbin; uint32 i, vk_offset, vk_max_length, usable_num_values; uint32* voffsets; if((num_values+1) * sizeof(uint32) > max_size) { if(strict) return NULL; usable_num_values = max_size/sizeof(uint32) - sizeof(uint32); } else usable_num_values = num_values; voffsets = regfi_parse_valuelist(file, offset, usable_num_values, strict); if(voffsets == NULL) return NULL; ret_val = (REGF_VK_REC**)zalloc(sizeof(REGF_VK_REC*) * num_values); if(ret_val == NULL) { free(voffsets); return NULL; } for(i=0; i < usable_num_values; i++) { hbin = regfi_lookup_hbin(file, voffsets[i]); if(!hbin) { free(voffsets); free(ret_val); return NULL; } vk_offset = voffsets[i] + REGF_BLOCKSIZE; vk_max_length = hbin->block_size - vk_offset + sizeof(uint32); ret_val[i] = regfi_parse_vk(file, vk_offset, vk_max_length, strict); if(ret_val[i] == NULL) { /* If we're being strict, throw out the whole list. * Otherwise, let it be NULL. */ if(strict) { free(voffsets); free(ret_val); return NULL; } } } free(voffsets); return ret_val; } /******************************************************************* * XXX: Need to add full key caching using a * custom cache structure. *******************************************************************/ REGF_NK_REC* regfi_load_key(REGF_FILE* file, uint32 offset, bool strict) { REGF_HBIN* hbin; REGF_HBIN* sub_hbin; REGF_NK_REC* nk; uint32 max_length, off; hbin = regfi_lookup_hbin(file, offset-REGF_BLOCKSIZE); if (hbin == NULL) return NULL; /* get the initial nk record */ max_length = hbin->block_size + hbin->file_off - offset; if ((nk = regfi_parse_nk(file, offset, max_length, true)) == NULL) return NULL; /* fill in values */ if(nk->num_values && (nk->values_off!=REGF_OFFSET_NONE)) { sub_hbin = hbin; if(!regfi_offset_in_hbin(hbin, nk->values_off)) sub_hbin = regfi_lookup_hbin(file, nk->values_off); if(sub_hbin == NULL) { if(strict) { free(nk); return NULL; } else nk->values = NULL; } else { off = nk->values_off + REGF_BLOCKSIZE; max_length = sub_hbin->block_size + sub_hbin->file_off - off; nk->values = regfi_load_valuelist(file, off, nk->num_values, max_length, true); if(strict && nk->values == NULL) { free(nk); return NULL; } } } /* now get subkeys */ if(nk->num_subkeys && (nk->subkeys_off != REGF_OFFSET_NONE)) { sub_hbin = hbin; if(!regfi_offset_in_hbin(hbin, nk->subkeys_off)) sub_hbin = regfi_lookup_hbin(file, nk->subkeys_off); if (sub_hbin == NULL) { if(strict) { regfi_key_free(nk); return NULL; } else nk->subkeys = NULL; } else { off = nk->subkeys_off + REGF_BLOCKSIZE; max_length = sub_hbin->block_size + sub_hbin->file_off - off; nk->subkeys = regfi_load_subkeylist(file, off, nk->num_subkeys, max_length, true); if(nk->subkeys == NULL) { /* XXX: Temporary hack to get around 'ri' records */ nk->num_subkeys = 0; } } } return nk; } /****************************************************************************** ******************************************************************************/ static bool regfi_find_root_nk(REGF_FILE* file, uint32 offset, uint32 hbin_size, uint32* root_offset) { uint8 tmp[4]; int32 record_size; uint32 length, hbin_offset = 0; REGF_NK_REC* nk = NULL; bool found = false; for(record_size=0; !found && (hbin_offset < hbin_size); ) { if(lseek(file->fd, offset+hbin_offset, SEEK_SET) == -1) return false; length = 4; if((regfi_read(file->fd, tmp, &length) != 0) || length != 4) return false; record_size = IVALS(tmp, 0); if(record_size < 0) { record_size = record_size*(-1); nk = regfi_parse_nk(file, offset+hbin_offset, hbin_size-hbin_offset, true); if(nk != NULL) { if(nk->key_type == NK_TYPE_ROOTKEY) { found = true; *root_offset = nk->offset; } free(nk); } } hbin_offset += record_size; } return found; } /******************************************************************* * Open the registry file and then read in the REGF block to get the * first hbin offset. *******************************************************************/ REGF_FILE* regfi_open(const char* filename) { REGF_FILE* rb; REGF_HBIN* hbin = NULL; uint32 hbin_off; int fd; bool rla; /* open an existing file */ if ((fd = open(filename, O_RDONLY)) == -1) { /* DEBUG(0,("regfi_open: failure to open %s (%s)\n", filename, strerror(errno)));*/ return NULL; } /* read in an existing file */ if ((rb = regfi_parse_regf(fd, true)) == NULL) { /* DEBUG(0,("regfi_open: Failed to read initial REGF block\n"));*/ close(fd); return NULL; } rb->hbins = range_list_new(); if(rb->hbins == NULL) { range_list_free(rb->hbins); close(fd); free(rb); return NULL; } rla = true; hbin_off = REGF_BLOCKSIZE; hbin = regfi_parse_hbin(rb, hbin_off, true); while(hbin && rla) { hbin_off = hbin->file_off + hbin->block_size; rla = range_list_add(rb->hbins, hbin->file_off, hbin->block_size, hbin); hbin = regfi_parse_hbin(rb, hbin_off, true); } /* success */ return rb; } /******************************************************************* *******************************************************************/ int regfi_close( REGF_FILE *file ) { int fd; uint32 i; /* nothing to do if there is no open file */ if ((file == NULL) || (file->fd == -1)) return 0; fd = file->fd; file->fd = -1; for(i=0; i < range_list_size(file->hbins); i++) free(range_list_get(file->hbins, i)->data); range_list_free(file->hbins); free(file); return close(fd); } /****************************************************************************** * There should be only *one* root key in the registry file based * on my experience. --jerry *****************************************************************************/ REGF_NK_REC* regfi_rootkey(REGF_FILE *file) { REGF_NK_REC* nk = NULL; REGF_HBIN* hbin; uint32 root_offset, i, num_hbins; if(!file) return NULL; /* Scan through the file one HBIN block at a time looking for an NK record with a type == 0x002c. Normally this is the first nk record in the first hbin block (but I'm not assuming that for now) */ num_hbins = range_list_size(file->hbins); for(i=0; i < num_hbins; i++) { hbin = (REGF_HBIN*)range_list_get(file->hbins, i)->data; if(regfi_find_root_nk(file, hbin->file_off+HBIN_HEADER_REC_SIZE, hbin->block_size-HBIN_HEADER_REC_SIZE, &root_offset)) { nk = regfi_load_key(file, root_offset, true); break; } } return nk; } /****************************************************************************** *****************************************************************************/ void regfi_key_free(REGF_NK_REC* nk) { uint32 i; if((nk->values != NULL) && (nk->values_off!=REGF_OFFSET_NONE)) { for(i=0; i < nk->num_values; i++) { if(nk->values[i]->valuename != NULL) free(nk->values[i]->valuename); if(nk->values[i]->data != NULL) free(nk->values[i]->data); free(nk->values[i]); } free(nk->values); } regfi_subkeylist_free(nk->subkeys); if(nk->keyname != NULL) free(nk->keyname); if(nk->classname != NULL) free(nk->classname); /* XXX: not freeing hbin because these are cached. This needs to be reviewed. */ /* XXX: not freeing sec_desc because these are cached. This needs to be reviewed. */ free(nk); } /****************************************************************************** *****************************************************************************/ void regfi_subkeylist_free(REGF_SUBKEY_LIST* list) { if(list != NULL) { free(list->elements); free(list); } } /****************************************************************************** *****************************************************************************/ REGFI_ITERATOR* regfi_iterator_new(REGF_FILE* fh) { REGF_NK_REC* root; REGFI_ITERATOR* ret_val = (REGFI_ITERATOR*)malloc(sizeof(REGFI_ITERATOR)); if(ret_val == NULL) return NULL; root = regfi_rootkey(fh); if(root == NULL) { free(ret_val); return NULL; } ret_val->key_positions = void_stack_new(REGF_MAX_DEPTH); if(ret_val->key_positions == NULL) { free(ret_val); free(root); return NULL; } /* This secret isn't very secret, but we don't need a good one. This * secret is just designed to prevent someone from trying to blow our * caching and make things slow. */ ret_val->sk_recs = lru_cache_create(127, 0x15DEAD05^time(NULL) ^(getpid()<<16)^(getppid()<<8), true); ret_val->f = fh; ret_val->cur_key = root; ret_val->cur_subkey = 0; ret_val->cur_value = 0; return ret_val; } /****************************************************************************** *****************************************************************************/ void regfi_iterator_free(REGFI_ITERATOR* i) { REGFI_ITER_POSITION* cur; if(i->cur_key != NULL) regfi_key_free(i->cur_key); while((cur = (REGFI_ITER_POSITION*)void_stack_pop(i->key_positions)) != NULL) { regfi_key_free(cur->nk); free(cur); } lru_cache_destroy(i->sk_recs); free(i); } /****************************************************************************** *****************************************************************************/ /* XXX: some way of indicating reason for failure should be added. */ bool regfi_iterator_down(REGFI_ITERATOR* i) { REGF_NK_REC* subkey; REGFI_ITER_POSITION* pos; pos = (REGFI_ITER_POSITION*)malloc(sizeof(REGFI_ITER_POSITION)); if(pos == NULL) return false; subkey = (REGF_NK_REC*)regfi_iterator_cur_subkey(i); if(subkey == NULL) { free(pos); return false; } pos->nk = i->cur_key; pos->cur_subkey = i->cur_subkey; if(!void_stack_push(i->key_positions, pos)) { free(pos); regfi_key_free(subkey); return false; } i->cur_key = subkey; i->cur_subkey = 0; i->cur_value = 0; return true; } /****************************************************************************** *****************************************************************************/ bool regfi_iterator_up(REGFI_ITERATOR* i) { REGFI_ITER_POSITION* pos; pos = (REGFI_ITER_POSITION*)void_stack_pop(i->key_positions); if(pos == NULL) return false; regfi_key_free(i->cur_key); i->cur_key = pos->nk; i->cur_subkey = pos->cur_subkey; i->cur_value = 0; free(pos); return true; } /****************************************************************************** *****************************************************************************/ bool regfi_iterator_to_root(REGFI_ITERATOR* i) { while(regfi_iterator_up(i)) continue; return true; } /****************************************************************************** *****************************************************************************/ bool regfi_iterator_find_subkey(REGFI_ITERATOR* i, const char* subkey_name) { REGF_NK_REC* subkey; bool found = false; uint32 old_subkey = i->cur_subkey; if(subkey_name == NULL) return false; /* XXX: this alloc/free of each sub key might be a bit excessive */ subkey = (REGF_NK_REC*)regfi_iterator_first_subkey(i); while((subkey != NULL) && (found == false)) { if(subkey->keyname != NULL && strcasecmp(subkey->keyname, subkey_name) == 0) found = true; else { regfi_key_free(subkey); subkey = (REGF_NK_REC*)regfi_iterator_next_subkey(i); } } if(found == false) { i->cur_subkey = old_subkey; return false; } regfi_key_free(subkey); return true; } /****************************************************************************** *****************************************************************************/ bool regfi_iterator_walk_path(REGFI_ITERATOR* i, const char** path) { uint32 x; if(path == NULL) return false; for(x=0; ((path[x] != NULL) && regfi_iterator_find_subkey(i, path[x]) && regfi_iterator_down(i)); x++) { continue; } if(path[x] == NULL) return true; /* XXX: is this the right number of times? */ for(; x > 0; x--) regfi_iterator_up(i); return false; } /****************************************************************************** *****************************************************************************/ const REGF_NK_REC* regfi_iterator_cur_key(REGFI_ITERATOR* i) { return i->cur_key; } /****************************************************************************** *****************************************************************************/ const REGF_SK_REC* regfi_iterator_cur_sk(REGFI_ITERATOR* i) { REGF_SK_REC* ret_val; REGF_HBIN* hbin; uint32 max_length, off; if(i->cur_key == NULL) return NULL; /* First look if we have already parsed it */ if((i->cur_key->sk_off!=REGF_OFFSET_NONE) && !(ret_val =(REGF_SK_REC*)lru_cache_find(i->sk_recs, &i->cur_key->sk_off, 4))) { hbin = regfi_lookup_hbin(i->f, i->cur_key->sk_off); if(hbin == NULL) return NULL; off = i->cur_key->sk_off + REGF_BLOCKSIZE; max_length = hbin->block_size + hbin->file_off - off; ret_val = regfi_parse_sk(i->f, off, max_length, true); if(ret_val == NULL) return NULL; ret_val->sk_off = i->cur_key->sk_off; lru_cache_update(i->sk_recs, &i->cur_key->sk_off, 4, ret_val); } return ret_val; } /****************************************************************************** *****************************************************************************/ const REGF_NK_REC* regfi_iterator_first_subkey(REGFI_ITERATOR* i) { i->cur_subkey = 0; return regfi_iterator_cur_subkey(i); } /****************************************************************************** *****************************************************************************/ const REGF_NK_REC* regfi_iterator_cur_subkey(REGFI_ITERATOR* i) { uint32 nk_offset; /* see if there is anything left to report */ if (!(i->cur_key) || (i->cur_key->subkeys_off==REGF_OFFSET_NONE) || (i->cur_subkey >= i->cur_key->num_subkeys)) return NULL; nk_offset = i->cur_key->subkeys->elements[i->cur_subkey].nk_off; return regfi_load_key(i->f, nk_offset+REGF_BLOCKSIZE, true); } /****************************************************************************** *****************************************************************************/ /* XXX: some way of indicating reason for failure should be added. */ const REGF_NK_REC* regfi_iterator_next_subkey(REGFI_ITERATOR* i) { const REGF_NK_REC* subkey; i->cur_subkey++; subkey = regfi_iterator_cur_subkey(i); if(subkey == NULL) i->cur_subkey--; return subkey; } /****************************************************************************** *****************************************************************************/ bool regfi_iterator_find_value(REGFI_ITERATOR* i, const char* value_name) { const REGF_VK_REC* cur; bool found = false; /* XXX: cur->valuename can be NULL in the registry. * Should we allow for a way to search for that? */ if(value_name == NULL) return false; cur = regfi_iterator_first_value(i); while((cur != NULL) && (found == false)) { if((cur->valuename != NULL) && (strcasecmp(cur->valuename, value_name) == 0)) found = true; else cur = regfi_iterator_next_value(i); } return found; } /****************************************************************************** *****************************************************************************/ const REGF_VK_REC* regfi_iterator_first_value(REGFI_ITERATOR* i) { i->cur_value = 0; return regfi_iterator_cur_value(i); } /****************************************************************************** *****************************************************************************/ const REGF_VK_REC* regfi_iterator_cur_value(REGFI_ITERATOR* i) { REGF_VK_REC* ret_val = NULL; if(i->cur_value < i->cur_key->num_values) ret_val = i->cur_key->values[i->cur_value]; return ret_val; } /****************************************************************************** *****************************************************************************/ const REGF_VK_REC* regfi_iterator_next_value(REGFI_ITERATOR* i) { const REGF_VK_REC* ret_val; i->cur_value++; ret_val = regfi_iterator_cur_value(i); if(ret_val == NULL) i->cur_value--; return ret_val; } /******************************************************************* * Computes the checksum of the registry file header. * buffer must be at least the size of an regf header (4096 bytes). *******************************************************************/ static uint32 regfi_compute_header_checksum(uint8* buffer) { uint32 checksum, x; int i; /* XOR of all bytes 0x0000 - 0x01FB */ checksum = x = 0; for ( i=0; i<0x01FB; i+=4 ) { x = IVAL(buffer, i ); checksum ^= x; } return checksum; } /******************************************************************* * XXX: Add way to return more detailed error information. *******************************************************************/ REGF_FILE* regfi_parse_regf(int fd, bool strict) { uint8 file_header[REGF_BLOCKSIZE]; uint32 length; uint32 file_length; struct stat sbuf; REGF_FILE* ret_val; /* Determine file length. Must be at least big enough * for the header and one hbin. */ if (fstat(fd, &sbuf) == -1) return NULL; file_length = sbuf.st_size; if(file_length < REGF_BLOCKSIZE+REGF_ALLOC_BLOCK) return NULL; ret_val = (REGF_FILE*)zalloc(sizeof(REGF_FILE)); if(ret_val == NULL) return NULL; ret_val->fd = fd; ret_val->file_length = file_length; length = REGF_BLOCKSIZE; if((regfi_read(fd, file_header, &length)) != 0 || length != REGF_BLOCKSIZE) { free(ret_val); return NULL; } ret_val->checksum = IVAL(file_header, 0x1FC); ret_val->computed_checksum = regfi_compute_header_checksum(file_header); if (strict && (ret_val->checksum != ret_val->computed_checksum)) { free(ret_val); return NULL; } memcpy(ret_val->magic, file_header, 4); if(strict && (memcmp(ret_val->magic, "regf", 4) != 0)) { free(ret_val); return NULL; } ret_val->unknown1 = IVAL(file_header, 0x4); ret_val->unknown2 = IVAL(file_header, 0x8); ret_val->mtime.low = IVAL(file_header, 0xC); ret_val->mtime.high = IVAL(file_header, 0x10); ret_val->unknown3 = IVAL(file_header, 0x14); ret_val->unknown4 = IVAL(file_header, 0x18); ret_val->unknown5 = IVAL(file_header, 0x1C); ret_val->unknown6 = IVAL(file_header, 0x20); ret_val->data_offset = IVAL(file_header, 0x24); ret_val->last_block = IVAL(file_header, 0x28); ret_val->unknown7 = IVAL(file_header, 0x2C); return ret_val; } /******************************************************************* * Given real file offset, read and parse the hbin at that location * along with it's associated cells. *******************************************************************/ /* XXX: Need a way to return types of errors. */ REGF_HBIN* regfi_parse_hbin(REGF_FILE* file, uint32 offset, bool strict) { REGF_HBIN *hbin; uint8 hbin_header[HBIN_HEADER_REC_SIZE]; uint32 length; if(offset >= file->file_length) return NULL; if(lseek(file->fd, offset, SEEK_SET) == -1) return NULL; length = HBIN_HEADER_REC_SIZE; if((regfi_read(file->fd, hbin_header, &length) != 0) || length != HBIN_HEADER_REC_SIZE) return NULL; if(lseek(file->fd, offset, SEEK_SET) == -1) return NULL; if(!(hbin = (REGF_HBIN*)zalloc(sizeof(REGF_HBIN)))) return NULL; hbin->file_off = offset; memcpy(hbin->magic, hbin_header, 4); if(strict && (memcmp(hbin->magic, "hbin", 4) != 0)) { free(hbin); return NULL; } hbin->first_hbin_off = IVAL(hbin_header, 0x4); hbin->block_size = IVAL(hbin_header, 0x8); /* this should be the same thing as hbin->block_size but just in case */ hbin->next_block = IVAL(hbin_header, 0x1C); /* Ensure the block size is a multiple of 0x1000 and doesn't run off * the end of the file. */ /* XXX: This may need to be relaxed for dealing with * partial or corrupt files. */ if((offset + hbin->block_size > file->file_length) || (hbin->block_size & 0xFFFFF000) != hbin->block_size) { free(hbin); return NULL; } return hbin; } /******************************************************************* *******************************************************************/ REGF_NK_REC* regfi_parse_nk(REGF_FILE* file, uint32 offset, uint32 max_size, bool strict) { uint8 nk_header[REGFI_NK_MIN_LENGTH]; REGF_NK_REC* ret_val; uint32 length; uint32 cell_length; bool unalloc = false; if(!regfi_parse_cell(file->fd, offset, nk_header, REGFI_NK_MIN_LENGTH, &cell_length, &unalloc)) return NULL; /* A bit of validation before bothering to allocate memory */ if((nk_header[0x0] != 'n') || (nk_header[0x1] != 'k')) { /* XXX: Deal with subkey-lists that reference other subkey-lists * (e.g. 'ri' records). */ return NULL; } ret_val = (REGF_NK_REC*)zalloc(sizeof(REGF_NK_REC)); if(ret_val == NULL) return NULL; ret_val->offset = offset; ret_val->cell_size = cell_length; if(ret_val->cell_size > max_size) ret_val->cell_size = max_size & 0xFFFFFFF8; if((ret_val->cell_size < REGFI_NK_MIN_LENGTH) || (strict && ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8))) { free(ret_val); return NULL; } ret_val->magic[0] = nk_header[0x0]; ret_val->magic[1] = nk_header[0x1]; ret_val->key_type = SVAL(nk_header, 0x2); if((ret_val->key_type != NK_TYPE_NORMALKEY) && (ret_val->key_type != NK_TYPE_ROOTKEY) && (ret_val->key_type != NK_TYPE_LINKKEY) && (ret_val->key_type != NK_TYPE_UNKNOWN1)) { free(ret_val); return NULL; } ret_val->mtime.low = IVAL(nk_header, 0x4); ret_val->mtime.high = IVAL(nk_header, 0x8); /* If the key is unallocated and the MTIME is earlier than Jan 1, 1990 * or later than Jan 1, 2290, we consider this a bad key. This helps * weed out some false positives during deleted data recovery. */ if(unalloc && ((ret_val->mtime.high < REGFI_MTIME_MIN_HIGH && ret_val->mtime.low < REGFI_MTIME_MIN_LOW) || (ret_val->mtime.high > REGFI_MTIME_MAX_HIGH && ret_val->mtime.low > REGFI_MTIME_MAX_LOW))) return NULL; ret_val->unknown1 = IVAL(nk_header, 0xC); ret_val->parent_off = IVAL(nk_header, 0x10); ret_val->num_subkeys = IVAL(nk_header, 0x14); ret_val->unknown2 = IVAL(nk_header, 0x18); ret_val->subkeys_off = IVAL(nk_header, 0x1C); ret_val->unknown3 = IVAL(nk_header, 0x20); ret_val->num_values = IVAL(nk_header, 0x24); ret_val->values_off = IVAL(nk_header, 0x28); ret_val->sk_off = IVAL(nk_header, 0x2C); ret_val->classname_off = IVAL(nk_header, 0x30); ret_val->max_bytes_subkeyname = IVAL(nk_header, 0x34); ret_val->max_bytes_subkeyclassname = IVAL(nk_header, 0x38); ret_val->max_bytes_valuename = IVAL(nk_header, 0x3C); ret_val->max_bytes_value = IVAL(nk_header, 0x40); ret_val->unk_index = IVAL(nk_header, 0x44); ret_val->name_length = SVAL(nk_header, 0x48); ret_val->classname_length = SVAL(nk_header, 0x4A); if(ret_val->name_length + REGFI_NK_MIN_LENGTH > ret_val->cell_size) { if(strict) { free(ret_val); return NULL; } else ret_val->name_length = ret_val->cell_size - REGFI_NK_MIN_LENGTH; } else if (unalloc) { /* Truncate cell_size if it's much larger than the apparent total record length. */ /* Round up to the next multiple of 8 */ length = (ret_val->name_length + REGFI_NK_MIN_LENGTH) & 0xFFFFFFF8; if(length < ret_val->name_length + REGFI_NK_MIN_LENGTH) length+=8; /* If cell_size is still greater, truncate. */ if(length < ret_val->cell_size) ret_val->cell_size = length; } ret_val->keyname = (char*)zalloc(sizeof(char)*(ret_val->name_length+1)); if(ret_val->keyname == NULL) { free(ret_val); return NULL; } /* Don't need to seek, should be at the right offset */ length = ret_val->name_length; if((regfi_read(file->fd, (uint8*)ret_val->keyname, &length) != 0) || length != ret_val->name_length) { free(ret_val->keyname); free(ret_val); return NULL; } ret_val->keyname[ret_val->name_length] = '\0'; if(ret_val->classname_off != REGF_OFFSET_NONE) { ret_val->classname = regfi_parse_classname(file, ret_val->classname_off+REGF_BLOCKSIZE, &ret_val->classname_length, strict); /* if(strict && ret_val->classname == NULL) return NULL; */ } return ret_val; } /*******************************************************************/ /* XXX: Not currently validating against hbin length. */ /*******************************************************************/ char* regfi_parse_classname(REGF_FILE* file, uint32 offset, uint16* name_length, bool strict) { char* ret_val = NULL; uint32 length; uint32 cell_length; bool unalloc = false; if(*name_length > 0 && offset != REGF_OFFSET_NONE && offset == (offset & 0xFFFFFFF8)) { if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc)) return NULL; if(cell_length < *name_length) { if(strict) return NULL; *name_length = cell_length & 0xFFFFFFF8; } ret_val = (char*)zalloc(*name_length); if(ret_val != NULL) { length = *name_length; if((regfi_read(file->fd, (uint8*)ret_val, &length) != 0) || length != *name_length) { free(ret_val); return NULL; } /*printf("==> cell_length=%d, classname_length=%d, max_bytes_subkeyclassname=%d\n", cell_length, ret_val->classname_length, ret_val->max_bytes_subkeyclassname);*/ } } return ret_val; } /******************************************************************* *******************************************************************/ REGF_VK_REC* regfi_parse_vk(REGF_FILE* file, uint32 offset, uint32 max_size, bool strict) { REGF_VK_REC* ret_val; uint8 vk_header[REGFI_VK_MIN_LENGTH]; uint32 raw_data_size, length, cell_length; bool unalloc = false; if(!regfi_parse_cell(file->fd, offset, vk_header, REGFI_VK_MIN_LENGTH, &cell_length, &unalloc)) return NULL; ret_val = (REGF_VK_REC*)zalloc(sizeof(REGF_VK_REC)); if(ret_val == NULL) return NULL; ret_val->offset = offset; ret_val->cell_size = cell_length; if(ret_val->cell_size > max_size) ret_val->cell_size = max_size & 0xFFFFFFF8; if((ret_val->cell_size < REGFI_VK_MIN_LENGTH) || ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8)) { free(ret_val); return NULL; } ret_val->magic[0] = vk_header[0x0]; ret_val->magic[1] = vk_header[0x1]; if((ret_val->magic[0] != 'v') || (ret_val->magic[1] != 'k')) { /* XXX: This does not account for deleted keys under Win2K which * often have this (and the name length) overwritten with * 0xFFFF. */ free(ret_val); return NULL; } ret_val->name_length = SVAL(vk_header, 0x2); raw_data_size = IVAL(vk_header, 0x4); ret_val->data_size = raw_data_size & ~VK_DATA_IN_OFFSET; ret_val->data_in_offset = (bool)(raw_data_size & VK_DATA_IN_OFFSET); ret_val->data_off = IVAL(vk_header, 0x8); ret_val->type = IVAL(vk_header, 0xC); ret_val->flag = SVAL(vk_header, 0x10); ret_val->unknown1 = SVAL(vk_header, 0x12); if(ret_val->flag & VK_FLAG_NAME_PRESENT) { if(ret_val->name_length + REGFI_VK_MIN_LENGTH + 4 > ret_val->cell_size) { if(strict) { free(ret_val); return NULL; } else ret_val->name_length = ret_val->cell_size - REGFI_VK_MIN_LENGTH - 4; } /* Round up to the next multiple of 8 */ cell_length = (ret_val->name_length + REGFI_VK_MIN_LENGTH + 4) & 0xFFFFFFF8; if(cell_length < ret_val->name_length + REGFI_VK_MIN_LENGTH + 4) cell_length+=8; ret_val->valuename = (char*)zalloc(sizeof(char)*(ret_val->name_length+1)); if(ret_val->valuename == NULL) { free(ret_val); return NULL; } length = ret_val->name_length; if((regfi_read(file->fd, (uint8*)ret_val->valuename, &length) != 0) || length != ret_val->name_length) { free(ret_val->valuename); free(ret_val); return NULL; } ret_val->valuename[ret_val->name_length] = '\0'; } else cell_length = REGFI_VK_MIN_LENGTH + 4; if(unalloc) { /* If cell_size is still greater, truncate. */ if(cell_length < ret_val->cell_size) ret_val->cell_size = cell_length; } if(ret_val->data_size == 0) ret_val->data = NULL; else { ret_val->data = regfi_parse_data(file, ret_val->data_off+REGF_BLOCKSIZE, raw_data_size, strict); if(strict && (ret_val->data == NULL)) { free(ret_val->valuename); free(ret_val); return NULL; } } return ret_val; } uint8* regfi_parse_data(REGF_FILE* file, uint32 offset, uint32 length, bool strict) { uint8* ret_val; uint32 read_length, cell_length; uint8 i; bool unalloc; /* The data is stored in the offset if the size <= 4 */ if (length & VK_DATA_IN_OFFSET) { length = length & ~VK_DATA_IN_OFFSET; if(length > 4) return NULL; if((ret_val = (uint8*)zalloc(sizeof(uint8)*length)) == NULL) return NULL; offset = offset - REGF_BLOCKSIZE; for(i = 0; i < length; i++) ret_val[i] = (uint8)((offset >> i*8) & 0xFF); } else { if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc)) return NULL; if((cell_length & 0xFFFFFFF8) != cell_length) return NULL; if(cell_length - 4 < length) { /* XXX: This strict condition has been triggered in multiple registries. * Not sure the cause, but the data length values are very large, * such as 53392. */ if(strict) return NULL; else length = cell_length - 4; } /* XXX: There is currently no check to ensure the data * cell doesn't cross HBIN boundary. */ if((ret_val = (uint8*)zalloc(sizeof(uint8)*length)) == NULL) return NULL; read_length = length; if((regfi_read(file->fd, ret_val, &read_length) != 0) || read_length != length) { free(ret_val); return NULL; } } return ret_val; } range_list* regfi_parse_unalloc_cells(REGF_FILE* file) { range_list* ret_val; REGF_HBIN* hbin; const range_list_element* hbins_elem; uint32 i, num_hbins, curr_off, cell_len; bool is_unalloc; ret_val = range_list_new(); if(ret_val == NULL) return NULL; num_hbins = range_list_size(file->hbins); for(i=0; ihbins, i); if(hbins_elem == NULL) break; hbin = (REGF_HBIN*)hbins_elem->data; curr_off = HBIN_HEADER_REC_SIZE; while(curr_off < hbin->block_size) { if(!regfi_parse_cell(file->fd, hbin->file_off+curr_off, NULL, 0, &cell_len, &is_unalloc)) break; if((cell_len == 0) || ((cell_len & 0xFFFFFFF8) != cell_len)) /* XXX: should report an error here. */ break; /* for some reason the record_size of the last record in an hbin block can extend past the end of the block even though the record fits within the remaining space....aaarrrgggghhhhhh */ if(curr_off + cell_len >= hbin->block_size) cell_len = hbin->block_size - curr_off; if(is_unalloc) range_list_add(ret_val, hbin->file_off+curr_off, cell_len, NULL); curr_off = curr_off+cell_len; } } return ret_val; }