source: trunk/lib/regfi.c @ 127

Last change on this file since 127 was 127, checked in by tim, 16 years ago

added preliminary support for 'ri' subkey lists.
cleaned up regfi API a bit.

  • Property svn:keywords set to Id
File size: 50.4 KB
Line 
1/*
2 * Branched from Samba project Subversion repository, version #7470:
3 *   http://viewcvs.samba.org/cgi-bin/viewcvs.cgi/trunk/source/registry/regfio.c?rev=7470&view=auto
4 *
5 * Unix SMB/CIFS implementation.
6 * Windows NT registry parsing library
7 *
8 * Copyright (C) 2005-2008 Timothy D. Morgan
9 * Copyright (C) 2005 Gerald (Jerry) Carter
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 3 of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
23 *
24 * $Id: regfi.c 127 2008-09-01 23:20:50Z tim $
25 */
26
27#include "../include/regfi.h"
28
29
30/* Registry types mapping */
31const unsigned int regfi_num_reg_types = 12;
32static const char* regfi_type_names[] =
33  {"NONE", "SZ", "EXPAND_SZ", "BINARY", "DWORD", "DWORD_BE", "LINK",
34   "MULTI_SZ", "RSRC_LIST", "RSRC_DESC", "RSRC_REQ_LIST", "QWORD"};
35
36
37/* Returns NULL on error */
38const char* regfi_type_val2str(unsigned int val)
39{
40  if(val == REG_KEY)
41    return "KEY";
42 
43  if(val >= regfi_num_reg_types)
44    return NULL;
45 
46  return regfi_type_names[val];
47}
48
49
50/* Returns -1 on error */
51int regfi_type_str2val(const char* str)
52{
53  int i;
54
55  if(strcmp("KEY", str) == 0)
56    return REG_KEY;
57
58  for(i=0; i < regfi_num_reg_types; i++)
59    if (strcmp(regfi_type_names[i], str) == 0) 
60      return i;
61
62  if(strcmp("DWORD_LE", str) == 0)
63    return REG_DWORD_LE;
64
65  return -1;
66}
67
68
69/* Security descriptor parsing functions  */
70
71const char* regfi_ace_type2str(uint8 type)
72{
73  static const char* map[7] 
74    = {"ALLOW", "DENY", "AUDIT", "ALARM", 
75       "ALLOW CPD", "OBJ ALLOW", "OBJ DENY"};
76  if(type < 7)
77    return map[type];
78  else
79    /* XXX: would be nice to return the unknown integer value. 
80     *      However, as it is a const string, it can't be free()ed later on,
81     *      so that would need to change.
82     */
83    return "UNKNOWN";
84}
85
86
87/* XXX: need a better reference on the meaning of each flag. */
88/* For more info, see:
89 *   http://msdn2.microsoft.com/en-us/library/aa772242.aspx
90 */
91char* regfi_ace_flags2str(uint8 flags)
92{
93  static const char* flag_map[32] = 
94    { "OI", /* Object Inherit */
95      "CI", /* Container Inherit */
96      "NP", /* Non-Propagate */
97      "IO", /* Inherit Only */
98      "IA", /* Inherited ACE */
99      NULL,
100      NULL,
101      NULL,
102    };
103
104  char* ret_val = malloc(35*sizeof(char));
105  char* fo = ret_val;
106  uint32 i;
107  uint8 f;
108
109  if(ret_val == NULL)
110    return NULL;
111
112  fo[0] = '\0';
113  if (!flags)
114    return ret_val;
115
116  for(i=0; i < 8; i++)
117  {
118    f = (1<<i);
119    if((flags & f) && (flag_map[i] != NULL))
120    {
121      strcpy(fo, flag_map[i]);
122      fo += strlen(flag_map[i]);
123      *(fo++) = ' ';
124      flags ^= f;
125    }
126  }
127 
128  /* Any remaining unknown flags are added at the end in hex. */
129  if(flags != 0)
130    sprintf(fo, "0x%.2X ", flags);
131
132  /* Chop off the last space if we've written anything to ret_val */
133  if(fo != ret_val)
134    fo[-1] = '\0';
135
136  /* XXX: what was this old VI flag for??
137     XXX: Is this check right?  0xF == 1|2|4|8, which makes it redundant...
138  if (flags == 0xF) {
139    if (some) strcat(flg_output, " ");
140    some = 1;
141    strcat(flg_output, "VI");
142  }
143  */
144
145  return ret_val;
146}
147
148
149char* regfi_ace_perms2str(uint32 perms)
150{
151  uint32 i, p;
152  /* This is more than is needed by a fair margin. */
153  char* ret_val = malloc(350*sizeof(char));
154  char* r = ret_val;
155
156  /* Each represents one of 32 permissions bits.  NULL is for undefined/reserved bits.
157   * For more information, see:
158   *   http://msdn2.microsoft.com/en-gb/library/aa374892.aspx
159   *   http://msdn2.microsoft.com/en-gb/library/ms724878.aspx
160   */
161  static const char* perm_map[32] = 
162    {/* object-specific permissions (registry keys, in this case) */
163      "QRY_VAL",       /* KEY_QUERY_VALUE */
164      "SET_VAL",       /* KEY_SET_VALUE */
165      "CREATE_KEY",    /* KEY_CREATE_SUB_KEY */
166      "ENUM_KEYS",     /* KEY_ENUMERATE_SUB_KEYS */
167      "NOTIFY",        /* KEY_NOTIFY */
168      "CREATE_LNK",    /* KEY_CREATE_LINK - Reserved for system use. */
169      NULL,
170      NULL,
171      "WOW64_64",      /* KEY_WOW64_64KEY */
172      "WOW64_32",      /* KEY_WOW64_32KEY */
173      NULL,
174      NULL,
175      NULL,
176      NULL,
177      NULL,
178      NULL,
179      /* standard access rights */
180      "DELETE",        /* DELETE */
181      "R_CONT",        /* READ_CONTROL */
182      "W_DAC",         /* WRITE_DAC */
183      "W_OWNER",       /* WRITE_OWNER */
184      "SYNC",          /* SYNCHRONIZE - Shouldn't be set in registries */
185      NULL,
186      NULL,
187      NULL,
188      /* other generic */
189      "SYS_SEC",       /* ACCESS_SYSTEM_SECURITY */
190      "MAX_ALLWD",     /* MAXIMUM_ALLOWED */
191      NULL,
192      NULL,
193      "GEN_A",         /* GENERIC_ALL */
194      "GEN_X",         /* GENERIC_EXECUTE */
195      "GEN_W",         /* GENERIC_WRITE */
196      "GEN_R",         /* GENERIC_READ */
197    };
198
199
200  if(ret_val == NULL)
201    return NULL;
202
203  r[0] = '\0';
204  for(i=0; i < 32; i++)
205  {
206    p = (1<<i);
207    if((perms & p) && (perm_map[i] != NULL))
208    {
209      strcpy(r, perm_map[i]);
210      r += strlen(perm_map[i]);
211      *(r++) = ' ';
212      perms ^= p;
213    }
214  }
215 
216  /* Any remaining unknown permission bits are added at the end in hex. */
217  if(perms != 0)
218    sprintf(r, "0x%.8X ", perms);
219
220  /* Chop off the last space if we've written anything to ret_val */
221  if(r != ret_val)
222    r[-1] = '\0';
223
224  return ret_val;
225}
226
227
228char* regfi_sid2str(DOM_SID* sid)
229{
230  uint32 i, size = MAXSUBAUTHS*11 + 24;
231  uint32 left = size;
232  uint8 comps = sid->num_auths;
233  char* ret_val = malloc(size);
234 
235  if(ret_val == NULL)
236    return NULL;
237
238  if(comps > MAXSUBAUTHS)
239    comps = MAXSUBAUTHS;
240
241  left -= sprintf(ret_val, "S-%u-%u", sid->sid_rev_num, sid->id_auth[5]);
242
243  for (i = 0; i < comps; i++) 
244    left -= snprintf(ret_val+(size-left), left, "-%u", sid->sub_auths[i]);
245
246  return ret_val;
247}
248
249
250char* regfi_get_acl(SEC_ACL* acl)
251{
252  uint32 i, extra, size = 0;
253  const char* type_str;
254  char* flags_str;
255  char* perms_str;
256  char* sid_str;
257  char* ace_delim = "";
258  char* ret_val = NULL;
259  char* tmp_val = NULL;
260  bool failed = false;
261  char field_delim = ':';
262
263  for (i = 0; i < acl->num_aces && !failed; i++)
264  {
265    sid_str = regfi_sid2str(&acl->ace[i].trustee);
266    type_str = regfi_ace_type2str(acl->ace[i].type);
267    perms_str = regfi_ace_perms2str(acl->ace[i].info.mask);
268    flags_str = regfi_ace_flags2str(acl->ace[i].flags);
269   
270    if(flags_str != NULL && perms_str != NULL 
271       && type_str != NULL && sid_str != NULL)
272    {
273      /* XXX: this is slow */
274      extra = strlen(sid_str) + strlen(type_str) 
275        + strlen(perms_str) + strlen(flags_str)+5;
276      tmp_val = realloc(ret_val, size+extra);
277
278      if(tmp_val == NULL)
279      {
280        free(ret_val);
281        failed = true;
282      }
283      else
284      {
285        ret_val = tmp_val;
286        size += snprintf(ret_val+size, extra, "%s%s%c%s%c%s%c%s",
287                         ace_delim,sid_str,
288                         field_delim,type_str,
289                         field_delim,perms_str,
290                         field_delim,flags_str);
291        ace_delim = "|";
292      }
293    }
294    else
295      failed = true;
296
297    if(sid_str != NULL)
298      free(sid_str);
299    if(sid_str != NULL)
300      free(perms_str);
301    if(sid_str != NULL)
302      free(flags_str);
303  }
304
305  return ret_val;
306}
307
308
309char* regfi_get_sacl(SEC_DESC *sec_desc)
310{
311  if (sec_desc->sacl)
312    return regfi_get_acl(sec_desc->sacl);
313  else
314    return NULL;
315}
316
317
318char* regfi_get_dacl(SEC_DESC *sec_desc)
319{
320  if (sec_desc->dacl)
321    return regfi_get_acl(sec_desc->dacl);
322  else
323    return NULL;
324}
325
326
327char* regfi_get_owner(SEC_DESC *sec_desc)
328{
329  return regfi_sid2str(sec_desc->owner_sid);
330}
331
332
333char* regfi_get_group(SEC_DESC *sec_desc)
334{
335  return regfi_sid2str(sec_desc->grp_sid);
336}
337
338
339/*****************************************************************************
340 * This function is just like read(2), except that it continues to
341 * re-try reading from the file descriptor if EINTR or EAGAIN is received. 
342 * regfi_read will attempt to read length bytes from fd and write them to buf.
343 *
344 * On success, 0 is returned.  Upon failure, an errno code is returned.
345 *
346 * The number of bytes successfully read is returned through the length
347 * parameter by reference.  If both the return value and length parameter are
348 * returned as 0, then EOF was encountered immediately
349 *****************************************************************************/
350uint32 regfi_read(int fd, uint8* buf, uint32* length)
351{
352  uint32 rsize = 0;
353  uint32 rret = 0;
354
355  do
356  {
357    rret = read(fd, buf + rsize, *length - rsize);
358    if(rret > 0)
359      rsize += rret;
360  }while(*length - rsize > 0 
361         && (rret > 0 || (rret == -1 && (errno == EAGAIN || errno == EINTR))));
362 
363  *length = rsize;
364  if (rret == -1 && errno != EINTR && errno != EAGAIN)
365    return errno;
366
367  return 0;
368}
369
370
371/*****************************************************************************
372 *
373 *****************************************************************************/
374bool regfi_parse_cell(int fd, uint32 offset, uint8* hdr, uint32 hdr_len,
375                      uint32* cell_length, bool* unalloc)
376{
377  uint32 length;
378  int32 raw_length;
379  uint8 tmp[4];
380
381  if(lseek(fd, offset, SEEK_SET) == -1)
382    return false;
383
384  length = 4;
385  if((regfi_read(fd, tmp, &length) != 0) || length != 4)
386    return false;
387  raw_length = IVALS(tmp, 0);
388
389  if(raw_length < 0)
390  {
391    (*cell_length) = raw_length*(-1);
392    (*unalloc) = false;
393  }
394  else
395  {
396    (*cell_length) = raw_length;
397    (*unalloc) = true;
398  }
399
400  if(*cell_length - 4 < hdr_len)
401    return false;
402
403  if(hdr_len > 0)
404  {
405    length = hdr_len;
406    if((regfi_read(fd, hdr, &length) != 0) || length != hdr_len)
407      return false;
408  }
409
410  return true;
411}
412
413
414/*******************************************************************
415 * Given an offset and an hbin, is the offset within that hbin?
416 * The offset is a virtual file offset.
417 *******************************************************************/
418static bool regfi_offset_in_hbin(REGF_HBIN* hbin, uint32 offset)
419{
420  if(!hbin)
421    return false;
422
423  if((offset > hbin->first_hbin_off) 
424     && (offset < (hbin->first_hbin_off + hbin->block_size)))
425    return true;
426               
427  return false;
428}
429
430
431
432/*******************************************************************
433 * Given a virtual offset, and receive the correpsonding HBIN
434 * block for it.  NULL if one doesn't exist.
435 *******************************************************************/
436REGF_HBIN* regfi_lookup_hbin(REGF_FILE* file, uint32 offset)
437{
438  return (REGF_HBIN*)range_list_find_data(file->hbins, offset+REGF_BLOCKSIZE);
439}
440
441
442/*******************************************************************
443 *******************************************************************/
444REGF_SUBKEY_LIST* regfi_merge_subkeylists(uint16 num_lists, 
445                                          REGF_SUBKEY_LIST** lists,
446                                          bool strict)
447{
448  uint32 i,j,k;
449  REGF_SUBKEY_LIST* ret_val = (REGF_SUBKEY_LIST*)zalloc(sizeof(REGF_SUBKEY_LIST));
450  if(ret_val == NULL || lists == NULL)
451    return NULL;
452 
453  /* Obtain total number of elements */
454  ret_val->num_keys = 0;
455  for(i=0; i < num_lists; i++)
456  {
457    if(lists[i] == NULL)
458    {
459      ret_val->num_keys = 0;
460      break;
461    }
462    ret_val->num_keys += lists[i]->num_keys;
463  }
464 
465  if(ret_val->num_keys > 0)
466  {
467    ret_val->elements = 
468      (REGF_SUBKEY_LIST_ELEM*)zalloc(sizeof(REGF_SUBKEY_LIST_ELEM)
469                                     * ret_val->num_keys);
470    k=0;
471    if(ret_val->elements != NULL)
472    {
473      for(i=0; i<num_lists; i++)
474        for(j=0; j<lists[i]->num_keys; j++)
475        {
476          ret_val->elements[k].hash=lists[i]->elements[j].hash;
477          ret_val->elements[k++].nk_off=lists[i]->elements[j].nk_off;
478        }
479    }
480  }
481 
482  for(i=0; i < num_lists; i++)
483    regfi_subkeylist_free(lists[i]);
484  free(lists);
485
486  return ret_val;
487}
488
489
490
491/*******************************************************************
492 *******************************************************************/
493REGF_SUBKEY_LIST* regfi_load_subkeylist(REGF_FILE* file, uint32 offset, 
494                                        uint32 num_keys, uint32 max_size, 
495                                        bool strict)
496{
497  REGF_SUBKEY_LIST* ret_val;
498  REGF_SUBKEY_LIST** sublists;
499  REGF_HBIN* sublist_hbin;
500  uint32 i, cell_length, length, num_sublists, off, max_length;
501  uint8* hashes;
502  uint8 buf[REGFI_SUBKEY_LIST_MIN_LEN];
503  bool unalloc;
504
505  if(!regfi_parse_cell(file->fd, offset, buf, REGFI_SUBKEY_LIST_MIN_LEN, 
506                       &cell_length, &unalloc))
507    return NULL;
508
509  if(cell_length > max_size)
510  {
511    if(strict)
512      return NULL;
513    cell_length = max_size & 0xFFFFFFF8;
514  }
515
516  if(buf[0] == 'r' && buf[1] == 'i')
517  {
518    num_sublists = SVAL(buf, 0x2);
519
520    /* XXX: check cell_length vs num_sublists vs max_length */
521    length = num_sublists*sizeof(uint32);
522    hashes = (uint8*)zalloc(length);
523    if(hashes == NULL)
524      return NULL;
525
526    if(regfi_read(file->fd, hashes, &length) != 0
527       || length != num_sublists*sizeof(uint32))
528    { 
529      free(hashes);
530      return NULL; 
531    }
532
533    sublists = (REGF_SUBKEY_LIST**)zalloc(num_sublists*sizeof(REGF_SUBKEY_LIST*));   
534    for(i=0; i < num_sublists; i++)
535    {
536      off = IVAL(hashes, i*4)+REGF_BLOCKSIZE;
537      sublist_hbin = regfi_lookup_hbin(file, IVAL(hashes, i*4));
538      max_length = sublist_hbin->block_size + sublist_hbin->file_off - off;
539
540      /* XXX: Need to add a recursion depth limit of some kind. */
541      sublists[i] = regfi_load_subkeylist(file, off, 0, max_length, strict);
542    }
543
544    return regfi_merge_subkeylists(num_sublists, sublists, strict);
545  }
546
547  ret_val = (REGF_SUBKEY_LIST*)zalloc(sizeof(REGF_SUBKEY_LIST));
548  if(ret_val == NULL)
549    return NULL;
550
551  ret_val->offset = offset;
552  ret_val->cell_size = cell_length;
553
554  if((buf[0] != 'l' || buf[1] != 'f') && (buf[0] != 'l' || buf[1] != 'h'))
555  {
556    /*printf("DEBUG: lf->header=%c%c\n", buf[0], buf[1]);*/
557    free(ret_val);
558    return NULL;
559  }
560
561  ret_val->magic[0] = buf[0];
562  ret_val->magic[1] = buf[1];
563
564  ret_val->num_keys = SVAL(buf, 0x2);
565  if(num_keys != ret_val->num_keys)
566  {
567    /*  Not sure which should be authoritative, the number from the
568     *  NK record, or the number in the subkey list.  Go with the larger
569     *  of the two to ensure all keys are found, since in 'ri' records,
570     *  there is no authoritative parent count for a leaf subkey list. 
571     *  Note the length checks on the cell later ensure that there won't
572     *  be any critical errors.
573     */
574    if(num_keys < ret_val->num_keys)
575      num_keys = ret_val->num_keys;
576    else
577      ret_val->num_keys = num_keys;
578  }
579
580  if(cell_length - REGFI_SUBKEY_LIST_MIN_LEN - sizeof(uint32) 
581     < ret_val->num_keys*sizeof(REGF_SUBKEY_LIST_ELEM))
582    return NULL;
583
584  length = sizeof(REGF_SUBKEY_LIST_ELEM)*ret_val->num_keys;
585  ret_val->elements = (REGF_SUBKEY_LIST_ELEM*)zalloc(length);
586  if(ret_val->elements == NULL)
587  {
588    free(ret_val);
589    return NULL;
590  }
591
592  hashes = (uint8*)zalloc(length);
593  if(hashes == NULL)
594  {
595    free(ret_val->elements);
596    free(ret_val);
597    return NULL;
598  }
599
600  if(regfi_read(file->fd, hashes, &length) != 0
601     || length != sizeof(REGF_SUBKEY_LIST_ELEM)*ret_val->num_keys)
602  {
603    free(ret_val->elements);
604    free(ret_val);
605    return NULL;
606  }
607
608  for (i=0; i < ret_val->num_keys; i++)
609  {
610    ret_val->elements[i].nk_off = IVAL(hashes, i*sizeof(REGF_SUBKEY_LIST_ELEM));
611    ret_val->elements[i].hash = IVAL(hashes, i*sizeof(REGF_SUBKEY_LIST_ELEM)+4);
612  }
613  free(hashes);
614
615  return ret_val;
616}
617
618
619
620/*******************************************************************
621 *******************************************************************/
622REGF_SK_REC* regfi_parse_sk(REGF_FILE* file, uint32 offset, uint32 max_size, bool strict)
623{
624  REGF_SK_REC* ret_val;
625  uint32 cell_length, length;
626  prs_struct ps;
627  uint8 sk_header[REGFI_SK_MIN_LENGTH];
628  bool unalloc = false;
629
630
631  if(!regfi_parse_cell(file->fd, offset, sk_header, REGFI_SK_MIN_LENGTH,
632                       &cell_length, &unalloc))
633    return NULL;
634   
635  if(sk_header[0] != 's' || sk_header[1] != 'k')
636    return NULL;
637 
638  ret_val = (REGF_SK_REC*)zalloc(sizeof(REGF_SK_REC));
639  if(ret_val == NULL)
640    return NULL;
641
642  ret_val->offset = offset;
643  /* XXX: Is there a way to be more conservative (shorter) with
644   *      cell length when cell is unallocated?
645   */
646  ret_val->cell_size = cell_length;
647
648  if(ret_val->cell_size > max_size)
649    ret_val->cell_size = max_size & 0xFFFFFFF8;
650  if((ret_val->cell_size < REGFI_SK_MIN_LENGTH) 
651     || (strict && ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8)))
652  {
653    free(ret_val);
654    return NULL;
655  }
656
657  ret_val->magic[0] = sk_header[0];
658  ret_val->magic[1] = sk_header[1];
659
660  /* XXX: Can additional validation be added here? */
661  ret_val->unknown_tag = SVAL(sk_header, 0x2);
662  ret_val->prev_sk_off = IVAL(sk_header, 0x4);
663  ret_val->next_sk_off = IVAL(sk_header, 0x8);
664  ret_val->ref_count = IVAL(sk_header, 0xC);
665  ret_val->desc_size = IVAL(sk_header, 0x10);
666
667  if(ret_val->desc_size + REGFI_SK_MIN_LENGTH > ret_val->cell_size)
668  {
669    free(ret_val);
670    return NULL;
671  }
672
673  /* XXX: need to get rid of this, but currently the security descriptor
674   * code depends on the ps structure.
675   */
676  if(!prs_init(&ps, ret_val->desc_size, NULL, UNMARSHALL))
677  {
678    free(ret_val);
679    return NULL;
680  }
681
682  length = ret_val->desc_size;
683  if(regfi_read(file->fd, (uint8*)ps.data_p, &length) != 0 
684     || length != ret_val->desc_size)
685  {
686    free(ret_val);
687    return NULL;
688  }
689
690  if (!sec_io_desc("sec_desc", &ret_val->sec_desc, &ps, 0))
691  {
692    free(ret_val);
693    return NULL;
694  }
695
696  free(ps.data_p);
697
698  return ret_val;
699}
700
701
702uint32* regfi_parse_valuelist(REGF_FILE* file, uint32 offset, 
703                              uint32 num_values, bool strict)
704{
705  uint32* ret_val;
706  uint32 i, cell_length, length, read_len;
707  bool unalloc;
708
709  if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc))
710    return NULL;
711
712  if(cell_length != (cell_length & 0xFFFFFFF8))
713  {
714    if(strict)
715      return NULL;
716    cell_length = cell_length & 0xFFFFFFF8;
717  }
718  if((num_values * sizeof(uint32)) > cell_length-sizeof(uint32))
719    return NULL;
720
721  read_len = num_values*sizeof(uint32);
722  ret_val = (uint32*)malloc(read_len);
723  if(ret_val == NULL)
724    return NULL;
725
726  length = read_len;
727  if((regfi_read(file->fd, (uint8*)ret_val, &length) != 0) || length != read_len)
728  {
729    free(ret_val);
730    return NULL;
731  }
732 
733  for(i=0; i < num_values; i++)
734  {
735    /* Fix endianness */
736    ret_val[i] = IVAL(&ret_val[i], 0);
737
738    /* Validate the first num_values values to ensure they make sense */
739    if(strict)
740    {
741      if((ret_val[i] + REGF_BLOCKSIZE > file->file_length)
742         || ((ret_val[i] & 0xFFFFFFF8) != ret_val[i]))
743      {
744        free(ret_val);
745        return NULL;
746      }
747    }
748  }
749
750  return ret_val;
751}
752
753
754
755/******************************************************************************
756 * If !strict, the list may contain NULLs, VK records may point to NULL.
757 ******************************************************************************/
758REGF_VK_REC** regfi_load_valuelist(REGF_FILE* file, uint32 offset, 
759                                   uint32 num_values, uint32 max_size, 
760                                   bool strict)
761{
762  REGF_VK_REC** ret_val;
763  REGF_HBIN* hbin;
764  uint32 i, vk_offset, vk_max_length, usable_num_values;
765  uint32* voffsets;
766
767  if((num_values+1) * sizeof(uint32) > max_size)
768  {
769    if(strict)
770      return NULL;
771    usable_num_values = max_size/sizeof(uint32) - sizeof(uint32);
772  }
773  else
774    usable_num_values = num_values;
775
776  voffsets = regfi_parse_valuelist(file, offset, usable_num_values, strict);
777  if(voffsets == NULL)
778    return NULL;
779
780  ret_val = (REGF_VK_REC**)zalloc(sizeof(REGF_VK_REC*) * num_values);
781  if(ret_val == NULL)
782  {
783    free(voffsets);
784    return NULL;
785  }
786 
787  for(i=0; i < usable_num_values; i++)
788  {
789    hbin = regfi_lookup_hbin(file, voffsets[i]);
790    if(!hbin)
791    {
792      free(voffsets);
793      free(ret_val);
794      return NULL;
795    }
796   
797    vk_offset =  voffsets[i] + REGF_BLOCKSIZE;
798    vk_max_length = hbin->block_size - vk_offset + sizeof(uint32);
799    ret_val[i] = regfi_parse_vk(file, vk_offset, vk_max_length, strict);
800    if(ret_val[i] == NULL)
801    { /* If we're being strict, throw out the whole list.
802       * Otherwise, let it be NULL.
803       */
804      if(strict)
805      {
806        free(voffsets);
807        free(ret_val);
808        return NULL;
809      }
810    }
811  }
812
813  free(voffsets);
814  return ret_val;
815}
816
817
818
819/*******************************************************************
820 * XXX: Need to add full key caching using a
821 *      custom cache structure.
822 *******************************************************************/
823REGF_NK_REC* regfi_load_key(REGF_FILE* file, uint32 offset, bool strict)
824{
825  REGF_HBIN* hbin;
826  REGF_HBIN* sub_hbin;
827  REGF_NK_REC* nk;
828  uint32 max_length, off;
829
830  hbin = regfi_lookup_hbin(file, offset-REGF_BLOCKSIZE);
831  if (hbin == NULL) 
832    return NULL;
833
834  /* get the initial nk record */
835  max_length = hbin->block_size + hbin->file_off - offset;
836  if ((nk = regfi_parse_nk(file, offset, max_length, true)) == NULL)
837    return NULL;
838
839  /* fill in values */
840  if(nk->num_values && (nk->values_off!=REGF_OFFSET_NONE)) 
841  {
842    sub_hbin = hbin;
843    if(!regfi_offset_in_hbin(hbin, nk->values_off)) 
844      sub_hbin = regfi_lookup_hbin(file, nk->values_off);
845   
846    if(sub_hbin == NULL)
847    {
848      if(strict)
849      {
850        free(nk);
851        return NULL;
852      }
853      else
854        nk->values = NULL;
855    }
856    else
857    {
858      off = nk->values_off + REGF_BLOCKSIZE;
859      max_length = sub_hbin->block_size + sub_hbin->file_off - off;
860      nk->values = regfi_load_valuelist(file, off, nk->num_values, max_length, 
861                                        true);
862      if(strict && nk->values == NULL)
863      {
864        free(nk);
865        return NULL;
866      }
867    }
868  }
869
870  /* now get subkeys */
871  if(nk->num_subkeys && (nk->subkeys_off != REGF_OFFSET_NONE)) 
872  {
873    sub_hbin = hbin;
874    if(!regfi_offset_in_hbin(hbin, nk->subkeys_off))
875      sub_hbin = regfi_lookup_hbin(file, nk->subkeys_off);
876
877    if (sub_hbin == NULL) 
878    {
879      if(strict)
880      {
881        regfi_key_free(nk);
882        return NULL;
883      }
884      else
885        nk->subkeys = NULL;
886    }
887    else
888    {
889      off = nk->subkeys_off + REGF_BLOCKSIZE;
890      max_length = sub_hbin->block_size + sub_hbin->file_off - off;
891      nk->subkeys = regfi_load_subkeylist(file, off, nk->num_subkeys, 
892                                          max_length, true);
893      if(nk->subkeys == NULL)
894      {
895        /* XXX: Temporary hack to get around 'ri' records */
896        nk->num_subkeys = 0;
897      }
898    }
899  }
900
901  return nk;
902}
903
904
905/******************************************************************************
906
907 ******************************************************************************/
908static bool regfi_find_root_nk(REGF_FILE* file, uint32 offset, uint32 hbin_size,
909                               uint32* root_offset)
910{
911  uint8 tmp[4];
912  int32 record_size;
913  uint32 length, hbin_offset = 0;
914  REGF_NK_REC* nk = NULL;
915  bool found = false;
916
917  for(record_size=0; !found && (hbin_offset < hbin_size); )
918  {
919    if(lseek(file->fd, offset+hbin_offset, SEEK_SET) == -1)
920      return false;
921   
922    length = 4;
923    if((regfi_read(file->fd, tmp, &length) != 0) || length != 4)
924      return false;
925    record_size = IVALS(tmp, 0);
926
927    if(record_size < 0)
928    {
929      record_size = record_size*(-1);
930      nk = regfi_parse_nk(file, offset+hbin_offset, hbin_size-hbin_offset, true);
931      if(nk != NULL)
932      {
933        if(nk->key_type == NK_TYPE_ROOTKEY)
934        {
935          found = true;
936          *root_offset = nk->offset;
937        }
938        free(nk);
939      }
940    }
941
942    hbin_offset += record_size;
943  }
944
945  return found;
946}
947
948
949/*******************************************************************
950 * Open the registry file and then read in the REGF block to get the
951 * first hbin offset.
952 *******************************************************************/
953REGF_FILE* regfi_open(const char* filename)
954{
955  REGF_FILE* rb;
956  REGF_HBIN* hbin = NULL;
957  uint32 hbin_off;
958  int fd;
959  bool rla;
960
961  /* open an existing file */
962  if ((fd = open(filename, O_RDONLY)) == -1) 
963  {
964    /* DEBUG(0,("regfi_open: failure to open %s (%s)\n", filename, strerror(errno)));*/
965    return NULL;
966  }
967 
968  /* read in an existing file */
969  if ((rb = regfi_parse_regf(fd, true)) == NULL) 
970  {
971    /* DEBUG(0,("regfi_open: Failed to read initial REGF block\n"));*/
972    close(fd);
973    return NULL;
974  }
975 
976  rb->hbins = range_list_new();
977  if(rb->hbins == NULL)
978  {
979    range_list_free(rb->hbins);
980    close(fd);
981    free(rb);
982    return NULL;
983  }
984 
985  rla = true;
986  hbin_off = REGF_BLOCKSIZE;
987  hbin = regfi_parse_hbin(rb, hbin_off, true);
988  while(hbin && rla)
989  {
990    hbin_off = hbin->file_off + hbin->block_size;
991    rla = range_list_add(rb->hbins, hbin->file_off, hbin->block_size, hbin);
992    hbin = regfi_parse_hbin(rb, hbin_off, true);
993  }
994
995  /* success */
996  return rb;
997}
998
999
1000/*******************************************************************
1001 *******************************************************************/
1002int regfi_close( REGF_FILE *file )
1003{
1004  int fd;
1005  uint32 i;
1006
1007  /* nothing to do if there is no open file */
1008  if ((file == NULL) || (file->fd == -1))
1009    return 0;
1010
1011  fd = file->fd;
1012  file->fd = -1;
1013  for(i=0; i < range_list_size(file->hbins); i++)
1014    free(range_list_get(file->hbins, i)->data);
1015  range_list_free(file->hbins);
1016
1017  free(file);
1018
1019  return close(fd);
1020}
1021
1022
1023/******************************************************************************
1024 * There should be only *one* root key in the registry file based
1025 * on my experience.  --jerry
1026 *****************************************************************************/
1027REGF_NK_REC* regfi_rootkey(REGF_FILE *file)
1028{
1029  REGF_NK_REC* nk = NULL;
1030  REGF_HBIN*   hbin;
1031  uint32       root_offset, i, num_hbins;
1032 
1033  if(!file)
1034    return NULL;
1035
1036  /* Scan through the file one HBIN block at a time looking
1037     for an NK record with a type == 0x002c.
1038     Normally this is the first nk record in the first hbin
1039     block (but I'm not assuming that for now) */
1040
1041  num_hbins = range_list_size(file->hbins);
1042  for(i=0; i < num_hbins; i++)
1043  {
1044    hbin = (REGF_HBIN*)range_list_get(file->hbins, i)->data;
1045    if(regfi_find_root_nk(file, hbin->file_off+HBIN_HEADER_REC_SIZE, 
1046                          hbin->block_size-HBIN_HEADER_REC_SIZE, &root_offset))
1047    {
1048      nk = regfi_load_key(file, root_offset, true);
1049      break;
1050    }
1051  }
1052
1053  return nk;
1054}
1055
1056
1057/******************************************************************************
1058 *****************************************************************************/
1059void regfi_key_free(REGF_NK_REC* nk)
1060{
1061  uint32 i;
1062 
1063  if((nk->values != NULL) && (nk->values_off!=REGF_OFFSET_NONE))
1064  {
1065    for(i=0; i < nk->num_values; i++)
1066    {
1067      if(nk->values[i]->valuename != NULL)
1068        free(nk->values[i]->valuename);
1069      if(nk->values[i]->data != NULL)
1070        free(nk->values[i]->data);
1071      free(nk->values[i]);
1072    }
1073    free(nk->values);
1074  }
1075
1076  regfi_subkeylist_free(nk->subkeys);
1077
1078  if(nk->keyname != NULL)
1079    free(nk->keyname);
1080  if(nk->classname != NULL)
1081    free(nk->classname);
1082
1083  /* XXX: not freeing hbin because these are cached.  This needs to be reviewed. */
1084  /* XXX: not freeing sec_desc because these are cached.  This needs to be reviewed. */
1085  free(nk);
1086}
1087
1088
1089/******************************************************************************
1090 *****************************************************************************/
1091void regfi_subkeylist_free(REGF_SUBKEY_LIST* list)
1092{
1093  if(list != NULL)
1094  {
1095    free(list->elements);
1096    free(list);
1097  }
1098}
1099
1100
1101/******************************************************************************
1102 *****************************************************************************/
1103REGFI_ITERATOR* regfi_iterator_new(REGF_FILE* fh)
1104{
1105  REGF_NK_REC* root;
1106  REGFI_ITERATOR* ret_val = (REGFI_ITERATOR*)malloc(sizeof(REGFI_ITERATOR));
1107  if(ret_val == NULL)
1108    return NULL;
1109
1110  root = regfi_rootkey(fh);
1111  if(root == NULL)
1112  {
1113    free(ret_val);
1114    return NULL;
1115  }
1116
1117  ret_val->key_positions = void_stack_new(REGF_MAX_DEPTH);
1118  if(ret_val->key_positions == NULL)
1119  {
1120    free(ret_val);
1121    free(root);
1122    return NULL;
1123  }
1124
1125  /* This secret isn't very secret, but we don't need a good one.  This
1126   * secret is just designed to prevent someone from trying to blow our
1127   * caching and make things slow.
1128   */
1129  ret_val->sk_recs = lru_cache_create(127, 0x15DEAD05^time(NULL)
1130                                           ^(getpid()<<16)^(getppid()<<8),
1131                                      true);
1132
1133  ret_val->f = fh;
1134  ret_val->cur_key = root;
1135  ret_val->cur_subkey = 0;
1136  ret_val->cur_value = 0;
1137
1138  return ret_val;
1139}
1140
1141
1142/******************************************************************************
1143 *****************************************************************************/
1144void regfi_iterator_free(REGFI_ITERATOR* i)
1145{
1146  REGFI_ITER_POSITION* cur;
1147
1148  if(i->cur_key != NULL)
1149    regfi_key_free(i->cur_key);
1150
1151  while((cur = (REGFI_ITER_POSITION*)void_stack_pop(i->key_positions)) != NULL)
1152  {
1153    regfi_key_free(cur->nk);
1154    free(cur);
1155  }
1156 
1157  lru_cache_destroy(i->sk_recs);
1158
1159  free(i);
1160}
1161
1162
1163
1164/******************************************************************************
1165 *****************************************************************************/
1166/* XXX: some way of indicating reason for failure should be added. */
1167bool regfi_iterator_down(REGFI_ITERATOR* i)
1168{
1169  REGF_NK_REC* subkey;
1170  REGFI_ITER_POSITION* pos;
1171
1172  pos = (REGFI_ITER_POSITION*)malloc(sizeof(REGFI_ITER_POSITION));
1173  if(pos == NULL)
1174    return false;
1175
1176  subkey = (REGF_NK_REC*)regfi_iterator_cur_subkey(i);
1177  if(subkey == NULL)
1178  {
1179    free(pos);
1180    return false;
1181  }
1182
1183  pos->nk = i->cur_key;
1184  pos->cur_subkey = i->cur_subkey;
1185  if(!void_stack_push(i->key_positions, pos))
1186  {
1187    free(pos);
1188    regfi_key_free(subkey);
1189    return false;
1190  }
1191
1192  i->cur_key = subkey;
1193  i->cur_subkey = 0;
1194  i->cur_value = 0;
1195
1196  return true;
1197}
1198
1199
1200/******************************************************************************
1201 *****************************************************************************/
1202bool regfi_iterator_up(REGFI_ITERATOR* i)
1203{
1204  REGFI_ITER_POSITION* pos;
1205
1206  pos = (REGFI_ITER_POSITION*)void_stack_pop(i->key_positions);
1207  if(pos == NULL)
1208    return false;
1209
1210  regfi_key_free(i->cur_key);
1211  i->cur_key = pos->nk;
1212  i->cur_subkey = pos->cur_subkey;
1213  i->cur_value = 0;
1214  free(pos);
1215
1216  return true;
1217}
1218
1219
1220/******************************************************************************
1221 *****************************************************************************/
1222bool regfi_iterator_to_root(REGFI_ITERATOR* i)
1223{
1224  while(regfi_iterator_up(i))
1225    continue;
1226
1227  return true;
1228}
1229
1230
1231/******************************************************************************
1232 *****************************************************************************/
1233bool regfi_iterator_find_subkey(REGFI_ITERATOR* i, const char* subkey_name)
1234{
1235  REGF_NK_REC* subkey;
1236  bool found = false;
1237  uint32 old_subkey = i->cur_subkey;
1238 
1239  if(subkey_name == NULL)
1240    return false;
1241
1242  /* XXX: this alloc/free of each sub key might be a bit excessive */
1243  subkey = (REGF_NK_REC*)regfi_iterator_first_subkey(i);
1244  while((subkey != NULL) && (found == false))
1245  {
1246    if(subkey->keyname != NULL 
1247       && strcasecmp(subkey->keyname, subkey_name) == 0)
1248      found = true;
1249    else
1250    {
1251      regfi_key_free(subkey);
1252      subkey = (REGF_NK_REC*)regfi_iterator_next_subkey(i);
1253    }
1254  }
1255
1256  if(found == false)
1257  {
1258    i->cur_subkey = old_subkey;
1259    return false;
1260  }
1261
1262  regfi_key_free(subkey);
1263  return true;
1264}
1265
1266
1267/******************************************************************************
1268 *****************************************************************************/
1269bool regfi_iterator_walk_path(REGFI_ITERATOR* i, const char** path)
1270{
1271  uint32 x;
1272  if(path == NULL)
1273    return false;
1274
1275  for(x=0; 
1276      ((path[x] != NULL) && regfi_iterator_find_subkey(i, path[x])
1277       && regfi_iterator_down(i));
1278      x++)
1279  { continue; }
1280
1281  if(path[x] == NULL)
1282    return true;
1283 
1284  /* XXX: is this the right number of times? */
1285  for(; x > 0; x--)
1286    regfi_iterator_up(i);
1287 
1288  return false;
1289}
1290
1291
1292/******************************************************************************
1293 *****************************************************************************/
1294const REGF_NK_REC* regfi_iterator_cur_key(REGFI_ITERATOR* i)
1295{
1296  return i->cur_key;
1297}
1298
1299
1300/******************************************************************************
1301 *****************************************************************************/
1302const REGF_SK_REC* regfi_iterator_cur_sk(REGFI_ITERATOR* i)
1303{
1304  REGF_SK_REC* ret_val;
1305  REGF_HBIN* hbin;
1306  uint32 max_length, off;
1307
1308  if(i->cur_key == NULL)
1309    return NULL;
1310 
1311  /* First look if we have already parsed it */
1312  if((i->cur_key->sk_off!=REGF_OFFSET_NONE)
1313     && !(ret_val =(REGF_SK_REC*)lru_cache_find(i->sk_recs, 
1314                                                &i->cur_key->sk_off, 4)))
1315  {
1316    hbin = regfi_lookup_hbin(i->f, i->cur_key->sk_off);
1317
1318    if(hbin == NULL)
1319      return NULL;
1320
1321    off = i->cur_key->sk_off + REGF_BLOCKSIZE;
1322    max_length = hbin->block_size + hbin->file_off - off;
1323    ret_val = regfi_parse_sk(i->f, off, max_length, true);
1324    if(ret_val == NULL)
1325      return NULL;
1326
1327    ret_val->sk_off = i->cur_key->sk_off;
1328    lru_cache_update(i->sk_recs, &i->cur_key->sk_off, 4, ret_val);
1329  }
1330
1331  return ret_val;
1332}
1333
1334
1335
1336/******************************************************************************
1337 *****************************************************************************/
1338const REGF_NK_REC* regfi_iterator_first_subkey(REGFI_ITERATOR* i)
1339{
1340  i->cur_subkey = 0;
1341  return regfi_iterator_cur_subkey(i);
1342}
1343
1344
1345/******************************************************************************
1346 *****************************************************************************/
1347const REGF_NK_REC* regfi_iterator_cur_subkey(REGFI_ITERATOR* i)
1348{
1349  uint32 nk_offset;
1350
1351  /* see if there is anything left to report */
1352  if (!(i->cur_key) || (i->cur_key->subkeys_off==REGF_OFFSET_NONE)
1353      || (i->cur_subkey >= i->cur_key->num_subkeys))
1354    return NULL;
1355
1356  nk_offset = i->cur_key->subkeys->elements[i->cur_subkey].nk_off;
1357 
1358  return regfi_load_key(i->f, nk_offset+REGF_BLOCKSIZE, true);
1359}
1360
1361
1362/******************************************************************************
1363 *****************************************************************************/
1364/* XXX: some way of indicating reason for failure should be added. */
1365const REGF_NK_REC* regfi_iterator_next_subkey(REGFI_ITERATOR* i)
1366{
1367  const REGF_NK_REC* subkey;
1368
1369  i->cur_subkey++;
1370  subkey = regfi_iterator_cur_subkey(i);
1371
1372  if(subkey == NULL)
1373    i->cur_subkey--;
1374
1375  return subkey;
1376}
1377
1378
1379/******************************************************************************
1380 *****************************************************************************/
1381bool regfi_iterator_find_value(REGFI_ITERATOR* i, const char* value_name)
1382{
1383  const REGF_VK_REC* cur;
1384  bool found = false;
1385
1386  /* XXX: cur->valuename can be NULL in the registry. 
1387   *      Should we allow for a way to search for that?
1388   */
1389  if(value_name == NULL)
1390    return false;
1391
1392  cur = regfi_iterator_first_value(i);
1393  while((cur != NULL) && (found == false))
1394  {
1395    if((cur->valuename != NULL)
1396       && (strcasecmp(cur->valuename, value_name) == 0))
1397      found = true;
1398    else
1399      cur = regfi_iterator_next_value(i);
1400  }
1401
1402  return found;
1403}
1404
1405
1406/******************************************************************************
1407 *****************************************************************************/
1408const REGF_VK_REC* regfi_iterator_first_value(REGFI_ITERATOR* i)
1409{
1410  i->cur_value = 0;
1411  return regfi_iterator_cur_value(i);
1412}
1413
1414
1415/******************************************************************************
1416 *****************************************************************************/
1417const REGF_VK_REC* regfi_iterator_cur_value(REGFI_ITERATOR* i)
1418{
1419  REGF_VK_REC* ret_val = NULL;
1420  if(i->cur_value < i->cur_key->num_values)
1421    ret_val = i->cur_key->values[i->cur_value];
1422
1423  return ret_val;
1424}
1425
1426
1427/******************************************************************************
1428 *****************************************************************************/
1429const REGF_VK_REC* regfi_iterator_next_value(REGFI_ITERATOR* i)
1430{
1431  const REGF_VK_REC* ret_val;
1432
1433  i->cur_value++;
1434  ret_val = regfi_iterator_cur_value(i);
1435  if(ret_val == NULL)
1436    i->cur_value--;
1437
1438  return ret_val;
1439}
1440
1441
1442
1443/*******************************************************************
1444 * Computes the checksum of the registry file header.
1445 * buffer must be at least the size of an regf header (4096 bytes).
1446 *******************************************************************/
1447static uint32 regfi_compute_header_checksum(uint8* buffer)
1448{
1449  uint32 checksum, x;
1450  int i;
1451
1452  /* XOR of all bytes 0x0000 - 0x01FB */
1453
1454  checksum = x = 0;
1455 
1456  for ( i=0; i<0x01FB; i+=4 ) {
1457    x = IVAL(buffer, i );
1458    checksum ^= x;
1459  }
1460 
1461  return checksum;
1462}
1463
1464
1465/*******************************************************************
1466 * XXX: Add way to return more detailed error information.
1467 *******************************************************************/
1468REGF_FILE* regfi_parse_regf(int fd, bool strict)
1469{
1470  uint8 file_header[REGF_BLOCKSIZE];
1471  uint32 length;
1472  uint32 file_length;
1473  struct stat sbuf;
1474  REGF_FILE* ret_val;
1475
1476  /* Determine file length.  Must be at least big enough
1477   * for the header and one hbin.
1478   */
1479  if (fstat(fd, &sbuf) == -1)
1480    return NULL;
1481  file_length = sbuf.st_size;
1482  if(file_length < REGF_BLOCKSIZE+REGF_ALLOC_BLOCK)
1483    return NULL;
1484
1485  ret_val = (REGF_FILE*)zalloc(sizeof(REGF_FILE));
1486  if(ret_val == NULL)
1487    return NULL;
1488
1489  ret_val->fd = fd;
1490  ret_val->file_length = file_length;
1491
1492  length = REGF_BLOCKSIZE;
1493  if((regfi_read(fd, file_header, &length)) != 0 
1494     || length != REGF_BLOCKSIZE)
1495  {
1496    free(ret_val);
1497    return NULL;
1498  }
1499
1500  ret_val->checksum = IVAL(file_header, 0x1FC);
1501  ret_val->computed_checksum = regfi_compute_header_checksum(file_header);
1502  if (strict && (ret_val->checksum != ret_val->computed_checksum))
1503  {
1504    free(ret_val);
1505    return NULL;
1506  }
1507
1508  memcpy(ret_val->magic, file_header, 4);
1509  if(strict && (memcmp(ret_val->magic, "regf", 4) != 0))
1510  {
1511    free(ret_val);
1512    return NULL;
1513  }
1514 
1515  ret_val->unknown1 = IVAL(file_header, 0x4);
1516  ret_val->unknown2 = IVAL(file_header, 0x8);
1517
1518  ret_val->mtime.low = IVAL(file_header, 0xC);
1519  ret_val->mtime.high = IVAL(file_header, 0x10);
1520
1521  ret_val->unknown3 = IVAL(file_header, 0x14);
1522  ret_val->unknown4 = IVAL(file_header, 0x18);
1523  ret_val->unknown5 = IVAL(file_header, 0x1C);
1524  ret_val->unknown6 = IVAL(file_header, 0x20);
1525 
1526  ret_val->data_offset = IVAL(file_header, 0x24);
1527  ret_val->last_block = IVAL(file_header, 0x28);
1528
1529  ret_val->unknown7 = IVAL(file_header, 0x2C);
1530
1531  return ret_val;
1532}
1533
1534
1535
1536/*******************************************************************
1537 * Given real file offset, read and parse the hbin at that location
1538 * along with it's associated cells.
1539 *******************************************************************/
1540/* XXX: Need a way to return types of errors.
1541 */
1542REGF_HBIN* regfi_parse_hbin(REGF_FILE* file, uint32 offset, bool strict)
1543{
1544  REGF_HBIN *hbin;
1545  uint8 hbin_header[HBIN_HEADER_REC_SIZE];
1546  uint32 length;
1547 
1548  if(offset >= file->file_length)
1549    return NULL;
1550
1551  if(lseek(file->fd, offset, SEEK_SET) == -1)
1552    return NULL;
1553
1554  length = HBIN_HEADER_REC_SIZE;
1555  if((regfi_read(file->fd, hbin_header, &length) != 0) 
1556     || length != HBIN_HEADER_REC_SIZE)
1557    return NULL;
1558
1559
1560  if(lseek(file->fd, offset, SEEK_SET) == -1)
1561    return NULL;
1562
1563  if(!(hbin = (REGF_HBIN*)zalloc(sizeof(REGF_HBIN)))) 
1564    return NULL;
1565  hbin->file_off = offset;
1566
1567  memcpy(hbin->magic, hbin_header, 4);
1568  if(strict && (memcmp(hbin->magic, "hbin", 4) != 0))
1569  {
1570    free(hbin);
1571    return NULL;
1572  }
1573
1574  hbin->first_hbin_off = IVAL(hbin_header, 0x4);
1575  hbin->block_size = IVAL(hbin_header, 0x8);
1576  /* this should be the same thing as hbin->block_size but just in case */
1577  hbin->next_block = IVAL(hbin_header, 0x1C);
1578
1579
1580  /* Ensure the block size is a multiple of 0x1000 and doesn't run off
1581   * the end of the file.
1582   */
1583  /* XXX: This may need to be relaxed for dealing with
1584   *      partial or corrupt files.
1585   */
1586  if((offset + hbin->block_size > file->file_length)
1587     || (hbin->block_size & 0xFFFFF000) != hbin->block_size)
1588  {
1589    free(hbin);
1590    return NULL;
1591  }
1592
1593  return hbin;
1594}
1595
1596
1597/*******************************************************************
1598 *******************************************************************/
1599REGF_NK_REC* regfi_parse_nk(REGF_FILE* file, uint32 offset, 
1600                            uint32 max_size, bool strict)
1601{
1602  uint8 nk_header[REGFI_NK_MIN_LENGTH];
1603  REGF_NK_REC* ret_val;
1604  uint32 length;
1605  uint32 cell_length;
1606  bool unalloc = false;
1607
1608  if(!regfi_parse_cell(file->fd, offset, nk_header, REGFI_NK_MIN_LENGTH,
1609                       &cell_length, &unalloc))
1610     return NULL;
1611 
1612  /* A bit of validation before bothering to allocate memory */
1613  if((nk_header[0x0] != 'n') || (nk_header[0x1] != 'k'))
1614  {
1615    /* XXX: Deal with subkey-lists that reference other subkey-lists
1616     *      (e.g. 'ri' records).
1617     */
1618    return NULL;
1619  }
1620
1621  ret_val = (REGF_NK_REC*)zalloc(sizeof(REGF_NK_REC));
1622  if(ret_val == NULL)
1623    return NULL;
1624
1625  ret_val->offset = offset;
1626  ret_val->cell_size = cell_length;
1627
1628  if(ret_val->cell_size > max_size)
1629    ret_val->cell_size = max_size & 0xFFFFFFF8;
1630  if((ret_val->cell_size < REGFI_NK_MIN_LENGTH) 
1631     || (strict && ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8)))
1632  {
1633    free(ret_val);
1634    return NULL;
1635  }
1636
1637  ret_val->magic[0] = nk_header[0x0];
1638  ret_val->magic[1] = nk_header[0x1];
1639  ret_val->key_type = SVAL(nk_header, 0x2);
1640  if((ret_val->key_type != NK_TYPE_NORMALKEY)
1641     && (ret_val->key_type != NK_TYPE_ROOTKEY) 
1642     && (ret_val->key_type != NK_TYPE_LINKKEY)
1643     && (ret_val->key_type != NK_TYPE_UNKNOWN1))
1644  {
1645    free(ret_val);
1646    return NULL;
1647  }
1648
1649  ret_val->mtime.low = IVAL(nk_header, 0x4);
1650  ret_val->mtime.high = IVAL(nk_header, 0x8);
1651  /* If the key is unallocated and the MTIME is earlier than Jan 1, 1990
1652   * or later than Jan 1, 2290, we consider this a bad key.  This helps
1653   * weed out some false positives during deleted data recovery.
1654   */
1655  if(unalloc
1656     && ((ret_val->mtime.high < REGFI_MTIME_MIN_HIGH
1657          && ret_val->mtime.low < REGFI_MTIME_MIN_LOW)
1658         || (ret_val->mtime.high > REGFI_MTIME_MAX_HIGH
1659             && ret_val->mtime.low > REGFI_MTIME_MAX_LOW)))
1660    return NULL;
1661
1662  ret_val->unknown1 = IVAL(nk_header, 0xC);
1663  ret_val->parent_off = IVAL(nk_header, 0x10);
1664  ret_val->num_subkeys = IVAL(nk_header, 0x14);
1665  ret_val->unknown2 = IVAL(nk_header, 0x18);
1666  ret_val->subkeys_off = IVAL(nk_header, 0x1C);
1667  ret_val->unknown3 = IVAL(nk_header, 0x20);
1668  ret_val->num_values = IVAL(nk_header, 0x24);
1669  ret_val->values_off = IVAL(nk_header, 0x28);
1670  ret_val->sk_off = IVAL(nk_header, 0x2C);
1671  ret_val->classname_off = IVAL(nk_header, 0x30);
1672
1673  ret_val->max_bytes_subkeyname = IVAL(nk_header, 0x34);
1674  ret_val->max_bytes_subkeyclassname = IVAL(nk_header, 0x38);
1675  ret_val->max_bytes_valuename = IVAL(nk_header, 0x3C);
1676  ret_val->max_bytes_value = IVAL(nk_header, 0x40);
1677  ret_val->unk_index = IVAL(nk_header, 0x44);
1678
1679  ret_val->name_length = SVAL(nk_header, 0x48);
1680  ret_val->classname_length = SVAL(nk_header, 0x4A);
1681
1682
1683  if(ret_val->name_length + REGFI_NK_MIN_LENGTH > ret_val->cell_size)
1684  {
1685    if(strict)
1686    {
1687      free(ret_val);
1688      return NULL;
1689    }
1690    else
1691      ret_val->name_length = ret_val->cell_size - REGFI_NK_MIN_LENGTH;
1692  }
1693  else if (unalloc)
1694  { /* Truncate cell_size if it's much larger than the apparent total record length. */
1695    /* Round up to the next multiple of 8 */
1696    length = (ret_val->name_length + REGFI_NK_MIN_LENGTH) & 0xFFFFFFF8;
1697    if(length < ret_val->name_length + REGFI_NK_MIN_LENGTH)
1698      length+=8;
1699
1700    /* If cell_size is still greater, truncate. */
1701    if(length < ret_val->cell_size)
1702      ret_val->cell_size = length;
1703  }
1704
1705  ret_val->keyname = (char*)zalloc(sizeof(char)*(ret_val->name_length+1));
1706  if(ret_val->keyname == NULL)
1707  {
1708    free(ret_val);
1709    return NULL;
1710  }
1711
1712  /* Don't need to seek, should be at the right offset */
1713  length = ret_val->name_length;
1714  if((regfi_read(file->fd, (uint8*)ret_val->keyname, &length) != 0)
1715     || length != ret_val->name_length)
1716  {
1717    free(ret_val->keyname);
1718    free(ret_val);
1719    return NULL;
1720  }
1721  ret_val->keyname[ret_val->name_length] = '\0';
1722
1723  if(ret_val->classname_off != REGF_OFFSET_NONE)
1724  {
1725    ret_val->classname
1726      = regfi_parse_classname(file, ret_val->classname_off+REGF_BLOCKSIZE,
1727                              &ret_val->classname_length, strict);
1728    /*
1729    if(strict && ret_val->classname == NULL)
1730        return NULL;
1731    */
1732  }
1733
1734  return ret_val;
1735}
1736
1737
1738/*******************************************************************/
1739/* XXX: Not currently validating against hbin length.              */
1740/*******************************************************************/
1741char* regfi_parse_classname(REGF_FILE* file, uint32 offset, 
1742                            uint16* name_length, bool strict)
1743{
1744  char* ret_val = NULL;
1745  uint32 length;
1746  uint32 cell_length;
1747  bool unalloc = false;
1748
1749  if(*name_length > 0 && offset != REGF_OFFSET_NONE
1750     && offset == (offset & 0xFFFFFFF8))
1751  {   
1752    if(!regfi_parse_cell(file->fd, offset, NULL, 0, &cell_length, &unalloc))
1753        return NULL;
1754
1755    if(cell_length < *name_length)
1756    {
1757      if(strict)
1758        return NULL;
1759      *name_length = cell_length & 0xFFFFFFF8;
1760    }
1761   
1762    ret_val = (char*)zalloc(*name_length);
1763    if(ret_val != NULL)
1764    {
1765      length = *name_length;
1766      if((regfi_read(file->fd, (uint8*)ret_val, &length) != 0)
1767         || length != *name_length)
1768      {
1769        free(ret_val);
1770        return NULL;
1771      }
1772
1773      /*printf("==> cell_length=%d, classname_length=%d, max_bytes_subkeyclassname=%d\n", cell_length, ret_val->classname_length, ret_val->max_bytes_subkeyclassname);*/
1774    }
1775  }
1776
1777  return ret_val;
1778}
1779
1780
1781/*******************************************************************
1782 *******************************************************************/
1783REGF_VK_REC* regfi_parse_vk(REGF_FILE* file, uint32 offset, 
1784                            uint32 max_size, bool strict)
1785{
1786  REGF_VK_REC* ret_val;
1787  uint8 vk_header[REGFI_VK_MIN_LENGTH];
1788  uint32 raw_data_size, length, cell_length;
1789  bool unalloc = false;
1790
1791  if(!regfi_parse_cell(file->fd, offset, vk_header, REGFI_VK_MIN_LENGTH,
1792                       &cell_length, &unalloc))
1793    return NULL;
1794
1795  ret_val = (REGF_VK_REC*)zalloc(sizeof(REGF_VK_REC));
1796  if(ret_val == NULL)
1797    return NULL;
1798
1799  ret_val->offset = offset;
1800  ret_val->cell_size = cell_length;
1801
1802  if(ret_val->cell_size > max_size)
1803    ret_val->cell_size = max_size & 0xFFFFFFF8;
1804  if((ret_val->cell_size < REGFI_VK_MIN_LENGTH) 
1805     || ret_val->cell_size != (ret_val->cell_size & 0xFFFFFFF8))
1806  {
1807    free(ret_val);
1808    return NULL;
1809  }
1810
1811  ret_val->magic[0] = vk_header[0x0];
1812  ret_val->magic[1] = vk_header[0x1];
1813  if((ret_val->magic[0] != 'v') || (ret_val->magic[1] != 'k'))
1814  {
1815    /* XXX: This does not account for deleted keys under Win2K which
1816     *      often have this (and the name length) overwritten with
1817     *      0xFFFF.
1818     */
1819    free(ret_val);
1820    return NULL;
1821  }
1822
1823  ret_val->name_length = SVAL(vk_header, 0x2);
1824  raw_data_size = IVAL(vk_header, 0x4);
1825  ret_val->data_size = raw_data_size & ~VK_DATA_IN_OFFSET;
1826  ret_val->data_in_offset = (bool)(raw_data_size & VK_DATA_IN_OFFSET);
1827  ret_val->data_off = IVAL(vk_header, 0x8);
1828  ret_val->type = IVAL(vk_header, 0xC);
1829  ret_val->flag = SVAL(vk_header, 0x10);
1830  ret_val->unknown1 = SVAL(vk_header, 0x12);
1831
1832  if(ret_val->flag & VK_FLAG_NAME_PRESENT)
1833  {
1834    if(ret_val->name_length + REGFI_VK_MIN_LENGTH + 4 > ret_val->cell_size)
1835    {
1836      if(strict)
1837      {
1838        free(ret_val);
1839        return NULL;
1840      }
1841      else
1842        ret_val->name_length = ret_val->cell_size - REGFI_VK_MIN_LENGTH - 4;
1843    }
1844
1845    /* Round up to the next multiple of 8 */
1846    cell_length = (ret_val->name_length + REGFI_VK_MIN_LENGTH + 4) & 0xFFFFFFF8;
1847    if(cell_length < ret_val->name_length + REGFI_VK_MIN_LENGTH + 4)
1848      cell_length+=8;
1849
1850    ret_val->valuename = (char*)zalloc(sizeof(char)*(ret_val->name_length+1));
1851    if(ret_val->valuename == NULL)
1852    {
1853      free(ret_val);
1854      return NULL;
1855    }
1856
1857    length = ret_val->name_length;
1858    if((regfi_read(file->fd, (uint8*)ret_val->valuename, &length) != 0)
1859       || length != ret_val->name_length)
1860    {
1861      free(ret_val->valuename);
1862      free(ret_val);
1863      return NULL;
1864    }
1865    ret_val->valuename[ret_val->name_length] = '\0';
1866  }
1867  else
1868    cell_length = REGFI_VK_MIN_LENGTH + 4;
1869
1870  if(unalloc)
1871  {
1872    /* If cell_size is still greater, truncate. */
1873    if(cell_length < ret_val->cell_size)
1874      ret_val->cell_size = cell_length;
1875  }
1876
1877  if(ret_val->data_size == 0)
1878    ret_val->data = NULL;
1879  else
1880  {
1881    ret_val->data = regfi_parse_data(file, ret_val->data_off+REGF_BLOCKSIZE,
1882                                     raw_data_size, strict);
1883    if(strict && (ret_val->data == NULL))
1884    {
1885      free(ret_val->valuename);
1886      free(ret_val);
1887      return NULL;
1888    }
1889  }
1890
1891  return ret_val;
1892}
1893
1894
1895uint8* regfi_parse_data(REGF_FILE* file, uint32 offset, uint32 length, bool strict)
1896{
1897  uint8* ret_val;
1898  uint32 read_length, cell_length;
1899  uint8 i;
1900  bool unalloc;
1901
1902  /* The data is stored in the offset if the size <= 4 */
1903  if (length & VK_DATA_IN_OFFSET)
1904  {
1905    length = length & ~VK_DATA_IN_OFFSET;
1906    if(length > 4)
1907      return NULL;
1908
1909    if((ret_val = (uint8*)zalloc(sizeof(uint8)*length)) == NULL)
1910      return NULL;
1911
1912    offset = offset - REGF_BLOCKSIZE;
1913    for(i = 0; i < length; i++)
1914      ret_val[i] = (uint8)((offset >> i*8) & 0xFF);
1915  }
1916  else
1917  {
1918    if(!regfi_parse_cell(file->fd, offset, NULL, 0,
1919                         &cell_length, &unalloc))
1920      return NULL;
1921
1922    if((cell_length & 0xFFFFFFF8) != cell_length)
1923      return NULL;
1924
1925    if(cell_length - 4 < length)
1926    {
1927      /* XXX: This strict condition has been triggered in multiple registries.
1928       *      Not sure the cause, but the data length values are very large,
1929       *      such as 53392.
1930       */
1931      if(strict)
1932        return NULL;
1933      else
1934        length = cell_length - 4;
1935    }
1936
1937    /* XXX: There is currently no check to ensure the data
1938     *      cell doesn't cross HBIN boundary.
1939     */
1940
1941    if((ret_val = (uint8*)zalloc(sizeof(uint8)*length)) == NULL)
1942      return NULL;
1943
1944    read_length = length;
1945    if((regfi_read(file->fd, ret_val, &read_length) != 0) 
1946       || read_length != length)
1947    {
1948      free(ret_val);
1949      return NULL;
1950    }
1951  }
1952
1953  return ret_val;
1954}
1955
1956
1957range_list* regfi_parse_unalloc_cells(REGF_FILE* file)
1958{
1959  range_list* ret_val;
1960  REGF_HBIN* hbin;
1961  const range_list_element* hbins_elem;
1962  uint32 i, num_hbins, curr_off, cell_len;
1963  bool is_unalloc;
1964
1965  ret_val = range_list_new();
1966  if(ret_val == NULL)
1967    return NULL;
1968
1969  num_hbins = range_list_size(file->hbins);
1970  for(i=0; i<num_hbins; i++)
1971  {
1972    hbins_elem = range_list_get(file->hbins, i);
1973    if(hbins_elem == NULL)
1974      break;
1975    hbin = (REGF_HBIN*)hbins_elem->data;
1976
1977    curr_off = HBIN_HEADER_REC_SIZE;
1978    while(curr_off < hbin->block_size)
1979    {
1980      if(!regfi_parse_cell(file->fd, hbin->file_off+curr_off, NULL, 0,
1981                           &cell_len, &is_unalloc))
1982        break;
1983     
1984      if((cell_len == 0) || ((cell_len & 0xFFFFFFF8) != cell_len))
1985        /* XXX: should report an error here. */
1986        break;
1987     
1988      /* for some reason the record_size of the last record in
1989         an hbin block can extend past the end of the block
1990         even though the record fits within the remaining
1991         space....aaarrrgggghhhhhh */ 
1992      if(curr_off + cell_len >= hbin->block_size)
1993        cell_len = hbin->block_size - curr_off;
1994     
1995      if(is_unalloc)
1996        range_list_add(ret_val, hbin->file_off+curr_off, 
1997                       cell_len, NULL);
1998     
1999      curr_off = curr_off+cell_len;
2000    }
2001  }
2002
2003  return ret_val;
2004}
Note: See TracBrowser for help on using the repository browser.