/* * $Id: $ * * This code was taken from Richard Sharpe''s editreg utility, in the * Samba CVS tree. It has since been simplified and turned into a * strictly read-only utility. * * Copyright (C) 2005 Timothy D. Morgan * Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /************************************************************************* A utility to edit a Windows NT/2K etc registry file. Many of the ideas in here come from other people and software. I first looked in Wine in misc/registry.c and was also influenced by http://www.wednesday.demon.co.uk/dosreg.html Which seems to contain comments from someone else. I reproduce them here incase the site above disappears. It actually comes from http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt. The goal here is to read the registry into memory, manipulate it, and then write it out if it was changed by any actions of the user. The windows NT registry has 2 different blocks, where one can occur many times... the "regf"-Block ================ "regf" is obviosly the abbreviation for "Registry file". "regf" is the signature of the header-block which is always 4kb in size, although only the first 64 bytes seem to be used and a checksum is calculated over the first 0x200 bytes only! Offset Size Contents 0x00000000 D-Word ID: ASCII-"regf" = 0x66676572 0x00000004 D-Word ???? //see struct REGF 0x00000008 D-Word ???? Always the same value as at 0x00000004 0x0000000C Q-Word last modify date in WinNT date-format 0x00000014 D-Word 1 0x00000018 D-Word 3 0x0000001C D-Word 0 0x00000020 D-Word 1 0x00000024 D-Word Offset of 1st key record 0x00000028 D-Word Size of the data-blocks (Filesize-4kb) 0x0000002C D-Word 1 0x000001FC D-Word Sum of all D-Words from 0x00000000 to 0x000001FB //XOR of all words. Nigel I have analyzed more registry files (from multiple machines running NT 4.0 german version) and could not find an explanation for the values marked with ???? the rest of the first 4kb page is not important... the "hbin"-Block ================ I dont know what "hbin" stands for, but this block is always a multiple of 4kb in size. Inside these hbin-blocks the different records are placed. The memory- management looks like a C-compiler heap management to me... hbin-Header =========== Offset Size Contents 0x0000 D-Word ID: ASCII-"hbin" = 0x6E696268 0x0004 D-Word Offset from the 1st hbin-Block 0x0008 D-Word Offset to the next hbin-Block 0x001C D-Word Block-size The values in 0x0008 and 0x001C should be the same, so I dont know if they are correct or swapped... From offset 0x0020 inside a hbin-block data is stored with the following format: Offset Size Contents 0x0000 D-Word Data-block size //this size must be a multiple of 8. Nigel 0x0004 ???? Data If the size field is negative (bit 31 set), the corresponding block is free and has a size of -blocksize! That does not seem to be true. All block lengths seem to be negative! (Richard Sharpe) The data is stored as one record per block. Block size is a multiple of 4 and the last block reaches the next hbin-block, leaving no room. (That also seems incorrect, in that the block size if a multiple of 8. That is, the block, including the 4 byte header, is always a multiple of 8 bytes. Richard Sharpe.) Records in the hbin-blocks ========================== nk-Record The nk-record can be treated as a kombination of tree-record and key-record of the win 95 registry. lf-Record The lf-record is the counterpart to the RGKN-record (the hash-function) vk-Record The vk-record consists information to a single value. sk-Record sk (? Security Key ?) is the ACL of the registry. Value-Lists The value-lists contain information about which values are inside a sub-key and dont have a header. Datas The datas of the registry are (like the value-list) stored without a header. All offset-values are relative to the first hbin-block and point to the block-size field of the record-entry. to get the file offset, you have to add the header size (4kb) and the size field (4 bytes)... the nk-Record ============= Offset Size Contents 0x0000 Word ID: ASCII-"nk" = 0x6B6E 0x0002 Word for the root-key: 0x2C, otherwise 0x20 //key symbolic links 0x10. Nigel 0x0004 Q-Word write-date/time in windows nt notation 0x0010 D-Word Offset of Owner/Parent key 0x0014 D-Word number of sub-Keys 0x001C D-Word Offset of the sub-key lf-Records 0x0024 D-Word number of values 0x0028 D-Word Offset of the Value-List 0x002C D-Word Offset of the sk-Record 0x0030 D-Word Offset of the Class-Name //see NK structure for the use of these fields. Nigel 0x0044 D-Word Unused (data-trash) //some kind of run time index. Does not appear to be important. Nigel 0x0048 Word name-length 0x004A Word class-name length 0x004C ???? key-name the Value-List ============== Offset Size Contents 0x0000 D-Word Offset 1st Value 0x0004 D-Word Offset 2nd Value 0x???? D-Word Offset nth Value To determine the number of values, you have to look at the owner-nk-record! Der vk-Record ============= Offset Size Contents 0x0000 Word ID: ASCII-"vk" = 0x6B76 0x0002 Word name length 0x0004 D-Word length of the data //if top bit is set when offset contains data. Nigel 0x0008 D-Word Offset of Data 0x000C D-Word Type of value 0x0010 Word Flag 0x0012 Word Unused (data-trash) 0x0014 ???? Name If bit 0 of the flag-word is set, a name is present, otherwise the value has no name (=default) If the data-size is lower 5, the data-offset value is used to store the data itself! The data-types ============== Wert Beteutung 0x0001 RegSZ: character string (in UNICODE!) 0x0002 ExpandSZ: string with "%var%" expanding (UNICODE!) 0x0003 RegBin: raw-binary value 0x0004 RegDWord: Dword 0x0007 RegMultiSZ: multiple strings, seperated with 0 (UNICODE!) The "lf"-record =============== Offset Size Contents 0x0000 Word ID: ASCII-"lf" = 0x666C 0x0002 Word number of keys 0x0004 ???? Hash-Records Hash-Record =========== Offset Size Contents 0x0000 D-Word Offset of corresponding "nk"-Record 0x0004 D-Word ASCII: the first 4 characters of the key-name, padded with 0-s. Case sensitiv! Keep in mind, that the value at 0x0004 is used for checking the data-consistency! If you change the key-name you have to change the hash-value too! //These hashrecords must be sorted low to high within the lf record. Nigel. The "sk"-block ============== (due to the complexity of the SAM-info, not clear jet) (This is just a self-relative security descriptor in the data. R Sharpe.) Offset Size Contents 0x0000 Word ID: ASCII-"sk" = 0x6B73 0x0002 Word Unused 0x0004 D-Word Offset of previous "sk"-Record 0x0008 D-Word Offset of next "sk"-Record 0x000C D-Word usage-counter 0x0010 D-Word Size of "sk"-record in bytes ???? //standard self relative security desciptor. Nigel ???? ???? Security and auditing settings... ???? The usage counter counts the number of references to this "sk"-record. You can use one "sk"-record for the entire registry! Windows nt date/time format =========================== The time-format is a 64-bit integer which is incremented every 0,0000001 seconds by 1 (I dont know how accurate it really is!) It starts with 0 at the 1st of january 1601 0:00! All values are stored in GMT time! The time-zone is important to get the real time! Common values for win95 and win-nt ================================== Offset values marking an "end of list", are either 0 or -1 (0xFFFFFFFF). If a value has no name (length=0, flag(bit 0)=0), it is treated as the "Default" entry... If a value has no data (length=0), it is displayed as empty. simplyfied win-3.?? registry: ============================= +-----------+ | next rec. |---+ +----->+------------+ | first sub | | | | Usage cnt. | | name | | +-->+------------+ | | length | | value | | | | next rec. | | | text |------->+-------+ +-----------+ | | | name rec. |--+ +------------+ | xxxxx | +------------+ | | value rec. |-------->+------------+ +-------+ v | +------------+ | Usage cnt. | +-----------+ | | length | | next rec. | | | text |------->+-------+ | first sub |------+ +------------+ | xxxxx | | name | +-------+ | value | +-----------+ Greatly simplyfied structure of the nt-registry: ================================================ +---------------------------------------------------------------+ | | v | +---------+ +---------->+-----------+ +----->+---------+ | | "nk" | | | lf-rec. | | | nk-rec. | | | ID | | | # of keys | | | parent |---+ | Date | | | 1st key |--+ | .... | | parent | | +-----------+ +---------+ | suk-keys|-----+ | values |--------------------->+----------+ | SK-rec. |---------------+ | 1. value |--> +----------+ | class |--+ | +----------+ | vk-rec. | +---------+ | | | .... | v | | data |--> +-------+ +------------+ | +----------+ | xxxxx | | Class name | | +-------+ +------------+ | v +---------+ +---------+ +----->| next sk |--->| Next sk |--+ | +---| prev sk |<---| prev sk | | | | | .... | | ... | | | | +---------+ +---------+ | | | ^ | | | | | | +--------------------+ | +----------------------------------+ --------------------------------------------------------------------------- Hope this helps.... (Although it was *fun* for me to uncover this things, it took me several sleepless nights ;) B.D. *************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #define False 0 #define True 1 #define REG_KEY_LIST_SIZE 10 /* * Structures for dealing with the on-disk format of the registry */ #define IVAL(buf) ((unsigned int) \ (unsigned int)*((unsigned char *)(buf)+3)<<24| \ (unsigned int)*((unsigned char *)(buf)+2)<<16| \ (unsigned int)*((unsigned char *)(buf)+1)<<8| \ (unsigned int)*((unsigned char *)(buf)+0)) #define SVAL(buf) ((unsigned short) \ (unsigned short)*((unsigned char *)(buf)+1)<<8| \ (unsigned short)*((unsigned char *)(buf)+0)) #define CVAL(buf) ((unsigned char)*((unsigned char *)(buf))) #define SIVAL(buf, val) \ ((((unsigned char *)(buf))[0])=(unsigned char)((val)&0xFF),\ (((unsigned char *)(buf))[1])=(unsigned char)(((val)>>8)&0xFF),\ (((unsigned char *)(buf))[2])=(unsigned char)(((val)>>16)&0xFF),\ (((unsigned char *)(buf))[3])=(unsigned char)((val)>>24)) #define SSVAL(buf, val) \ ((((unsigned char *)(buf))[0])=(unsigned char)((val)&0xFF),\ (((unsigned char *)(buf))[1])=(unsigned char)((val)>>8)) static int verbose = 0; static int print_security = 0; static int full_print = 0; static const char *def_owner_sid_str = NULL; /* * These definitions are for the in-memory registry structure. * It is a tree structure that mimics what you see with tools like regedit */ /* * DateTime struct for Windows */ typedef struct date_time_s { unsigned int low, high; } NTTIME; /* * Definition of a Key. It has a name, classname, date/time last modified, * sub-keys, values, and a security descriptor */ #define REG_ROOT_KEY 1 #define REG_SUB_KEY 2 #define REG_SYM_LINK 3 typedef struct key_sec_desc_s KEY_SEC_DESC; typedef struct reg_key_s { char *name; /* Name of the key */ char *class_name; int type; /* One of REG_ROOT_KEY or REG_SUB_KEY */ NTTIME last_mod; /* Time last modified */ struct reg_key_s *owner; struct key_list_s *sub_keys; struct val_list_s *values; KEY_SEC_DESC *security; unsigned int offset; /* Offset of the record in the file */ } REG_KEY; /* * The KEY_LIST struct lists sub-keys. */ typedef struct key_list_s { int key_count; int max_keys; REG_KEY *keys[1]; } KEY_LIST; typedef struct val_key_s { char *name; int has_name; int data_type; int data_len; void *data_blk; /* Might want a separate block */ } VAL_KEY; typedef struct val_list_s { int val_count; int max_vals; VAL_KEY *vals[1]; } VAL_LIST; #ifndef MAXSUBAUTHS #define MAXSUBAUTHS 15 #endif typedef struct sid_s { unsigned char ver, auths; unsigned char auth[6]; unsigned int sub_auths[MAXSUBAUTHS]; } sid_t; typedef struct ace_struct_s { unsigned char type, flags; unsigned int perms; /* Perhaps a better def is in order */ sid_t *trustee; } ACE; typedef struct acl_struct_s { unsigned short rev, refcnt; unsigned short num_aces; ACE *aces[1]; } ACL; typedef struct sec_desc_s { unsigned int rev, type; sid_t *owner, *group; ACL *sacl, *dacl; } SEC_DESC; #define SEC_DESC_NON 0 #define SEC_DESC_RES 1 #define SEC_DESC_OCU 2 #define SEC_DESC_NBK 3 typedef struct sk_struct SK_HDR; struct key_sec_desc_s { struct key_sec_desc_s *prev, *next; int ref_cnt; int state; int offset; SK_HDR *sk_hdr; /* This means we must keep the registry in memory */ SEC_DESC *sec_desc; }; /* * All of the structures below actually have a four-byte length before them * which always seems to be negative. The following macro retrieves that * size as an integer */ #define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1)) typedef unsigned int DWORD; typedef unsigned short WORD; #define REG_REGF_ID 0x66676572 typedef struct regf_block { DWORD REGF_ID; /* regf */ DWORD uk1; DWORD uk2; DWORD tim1, tim2; DWORD uk3; /* 1 */ DWORD uk4; /* 3 */ DWORD uk5; /* 0 */ DWORD uk6; /* 1 */ DWORD first_key; /* offset */ unsigned int dblk_size; DWORD uk7[116]; /* 1 */ DWORD chksum; } REGF_HDR; typedef struct hbin_sub_struct { DWORD dblocksize; char data[1]; } HBIN_SUB_HDR; #define REG_HBIN_ID 0x6E696268 typedef struct hbin_struct { DWORD HBIN_ID; /* hbin */ DWORD off_from_first; DWORD off_to_next; DWORD uk1; DWORD uk2; DWORD uk3; DWORD uk4; DWORD blk_size; HBIN_SUB_HDR hbin_sub_hdr; } HBIN_HDR; #define REG_NK_ID 0x6B6E typedef struct nk_struct { WORD NK_ID; WORD type; DWORD t1, t2; DWORD uk1; DWORD own_off; DWORD subk_num; DWORD uk2; DWORD lf_off; DWORD uk3; DWORD val_cnt; DWORD val_off; DWORD sk_off; DWORD clsnam_off; DWORD unk4[4]; DWORD unk5; WORD nam_len; WORD clsnam_len; char key_nam[1]; /* Actual length determined by nam_len */ } NK_HDR; #define REG_SK_ID 0x6B73 struct sk_struct { WORD SK_ID; WORD uk1; DWORD prev_off; DWORD next_off; DWORD ref_cnt; DWORD rec_size; char sec_desc[1]; }; typedef struct ace_struct { unsigned char type; unsigned char flags; unsigned short length; unsigned int perms; sid_t trustee; } REG_ACE; typedef struct acl_struct { WORD rev; WORD size; DWORD num_aces; REG_ACE *aces; /* One or more ACEs */ } REG_ACL; typedef struct sec_desc_rec { WORD rev; WORD type; DWORD owner_off; DWORD group_off; DWORD sacl_off; DWORD dacl_off; } REG_SEC_DESC; typedef struct hash_struct { DWORD nk_off; char hash[4]; } HASH_REC; #define REG_LF_ID 0x666C typedef struct lf_struct { WORD LF_ID; WORD key_count; struct hash_struct hr[1]; /* Array of hash records, depending on key_count */ } LF_HDR; typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */ #define REG_VK_ID 0x6B76 typedef struct vk_struct { WORD VK_ID; WORD nam_len; DWORD dat_len; /* If top-bit set, offset contains the data */ DWORD dat_off; DWORD dat_type; WORD flag; /* =1, has name, else no name (=Default). */ WORD unk1; char dat_name[1]; /* Name starts here ... */ } VK_HDR; #define REG_TYPE_DELETE -1 #define REG_TYPE_NONE 0 #define REG_TYPE_REGSZ 1 #define REG_TYPE_EXPANDSZ 2 #define REG_TYPE_BIN 3 #define REG_TYPE_DWORD 4 #define REG_TYPE_MULTISZ 7 typedef struct _val_str { unsigned int val; const char * str; } VAL_STR; /* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */ typedef struct sk_map_s { int sk_off; KEY_SEC_DESC *key_sec_desc; } SK_MAP; /* * This structure keeps track of the output format of the registry */ #define REG_OUTBLK_HDR 1 #define REG_OUTBLK_HBIN 2 typedef struct hbin_blk_s { int type, size; struct hbin_blk_s *next; char *data; /* The data block */ unsigned int file_offset; /* Offset in file */ unsigned int free_space; /* Amount of free space in block */ unsigned int fsp_off; /* Start of free space in block */ int complete, stored; } HBIN_BLK; /* * This structure keeps all the registry stuff in one place */ typedef struct regf_struct_s { int reg_type; char *regfile_name, *outfile_name; int fd; struct stat sbuf; char *base; int modified; NTTIME last_mod_time; REG_KEY *root; /* Root of the tree for this file */ int sk_count, sk_map_size; SK_MAP *sk_map; const char *owner_sid_str; SEC_DESC *def_sec_desc; /* * These next pointers point to the blocks used to contain the * keys when we are preparing to write them to a file */ HBIN_BLK *blk_head, *blk_tail, *free_space; } REGF; /* Function prototypes */ static int nt_val_list_iterator(REGF *regf, REG_KEY *key_tree, int bf, char *path, int terminal, const char* filter_prefix); static int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path, const char* filter_prefix); static REG_KEY *nt_find_key_by_name(REG_KEY *tree, char *key); static int print_key(const char *path, char *name, char *class_name, int root, int terminal, int vals, char* newline); static int print_val(const char *path, char *val_name, int val_type, int data_len, void *data_blk, int terminal, int first, int last); static int print_sec(SEC_DESC *sec_desc); unsigned int str_is_prefix(const char* p, const char* s) { const char* cp; const char* cs; cs = s; for(cp=p; (*cp) != '\0'; cp++) { if((*cp)!=(*cs)) return 0; cs++; } return 1; } /* * Iterate over the keys, depth first, calling a function for each key * and indicating if it is terminal or non-terminal and if it has values. * * In addition, for each value in the list, call a value list function */ static int nt_val_list_iterator(REGF *regf, REG_KEY *key_tree, int bf, char *path, int terminal, const char* filter_prefix) { int i; VAL_LIST* val_list = key_tree->values; if (str_is_prefix(filter_prefix, path)) { for (i=0; ival_count; i++) { /*XXX: print_key() is doing nothing right now, can probably be removed. */ if (!print_key(path, key_tree->name, key_tree->class_name, (key_tree->type == REG_ROOT_KEY), (key_tree->sub_keys == NULL), (key_tree->values?(key_tree->values->val_count):0), "\n") || !print_val(path, val_list->vals[i]->name,val_list->vals[i]->data_type, val_list->vals[i]->data_len, val_list->vals[i]->data_blk, terminal, (i == 0), (i == val_list->val_count))) { return 0; } } } return 1; } static int nt_key_list_iterator(REGF *regf, KEY_LIST *key_list, int bf, const char *path, const char* filter_prefix) { int i; if (!key_list) return 1; for (i=0; i < key_list->key_count; i++) { if (!nt_key_iterator(regf, key_list->keys[i], bf, path, filter_prefix)) return 0; } return 1; } static int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path, const char* filter_prefix) { int path_len = strlen(path); char *new_path; if (!regf || !key_tree) return -1; /* List the key first, then the values, then the sub-keys */ /*printf("filter_prefix: %s, path: %s\n", filter_prefix, path);*/ if (str_is_prefix(filter_prefix, path)) { /*XXX: print_key() is doing nothing right now, can probably be removed. */ if (!print_key(path, key_tree->name, key_tree->class_name, (key_tree->type == REG_ROOT_KEY), (key_tree->sub_keys == NULL), (key_tree->values?(key_tree->values->val_count):0), "\n")) { return 0; } /* * If we have a security print routine, call it * If the security print routine returns false, stop. */ if (key_tree->security && !print_sec(key_tree->security->sec_desc)) return 0; } new_path = (char *)malloc(path_len + 1 + strlen(key_tree->name) + 1); if (!new_path) return 0; /* Errors? */ new_path[0] = '\0'; strcat(new_path, path); strcat(new_path, key_tree->name); strcat(new_path, "\\"); /* * Now, iterate through the values in the val_list */ if (key_tree->values && !nt_val_list_iterator(regf, key_tree, bf, new_path, (key_tree->values!=NULL), filter_prefix)) { free(new_path); return 0; } /* * Now, iterate through the keys in the key list */ if (key_tree->sub_keys && !nt_key_list_iterator(regf, key_tree->sub_keys, bf, new_path, filter_prefix)) { free(new_path); return 0; } free(new_path); return 1; } /* * Find key by name in a list ... * Take the first component and search for that in the list */ static REG_KEY *nt_find_key_in_list_by_name(KEY_LIST *list, char *key) { int i; REG_KEY *res = NULL; if (!list || !key || !*key) return NULL; for (i = 0; i < list->key_count; i++) if ((res = nt_find_key_by_name(list->keys[i], key))) return res; return NULL; } /* * Find key by name in a tree ... We will assume absolute names here, but we * need the root of the tree ... */ static REG_KEY* nt_find_key_by_name(REG_KEY* tree, char* key) { char* lname = NULL; char* c1; char* c2; REG_KEY* tmp; if (!tree || !key || !*key) return NULL; lname = strdup(key); if (!lname) return NULL; /* * Make sure that the first component is correct ... */ c1 = lname; c2 = strchr(c1, '\\'); if (c2) { /* Split here ... */ *c2 = 0; c2++; } if (strcmp(c1, tree->name) != 0) { if (lname) free(lname); return NULL; } if (c2) { tmp = nt_find_key_in_list_by_name(tree->sub_keys, c2); free(lname); return tmp; } else { if (lname) free(lname); return tree; } return NULL; } /* Make, delete keys */ static int nt_delete_val_key(VAL_KEY *val_key) { if (val_key) { if (val_key->name) free(val_key->name); if (val_key->data_blk) free(val_key->data_blk); free(val_key); }; return 1; } /* * Add a key to the tree ... We walk down the components matching until * we don't find any. There must be a match on the first component ... * We return the key structure for the final component as that is * often where we want to add values ... */ /* * Convert a string of the form S-1-5-x[-y-z-r] to a SID */ /* MIGHT COME IN HANDY LATER. static int sid_string_to_sid(sid_t **sid, const char *sid_str) { int i = 0; unsigned int auth; const char *lstr; *sid = (sid_t *)malloc(sizeof(sid_t)); if (!*sid) return 0; memset(*sid, 0, sizeof(sid_t)); if (strncmp(sid_str, "S-1-5", 5)) { fprintf(stderr, "Does not conform to S-1-5...: %s\n", sid_str); return 0; } //We only allow strings of form S-1-5... (*sid)->ver = 1; (*sid)->auth[5] = 5; lstr = sid_str + 5; while (1) { if (!lstr || !lstr[0] || sscanf(lstr, "-%u", &auth) == 0) { if (i < 1) { fprintf(stderr, "Not of form -d-d...: %s, %u\n", lstr, i); return 0; } (*sid)->auths=i; return 1; } (*sid)->sub_auths[i] = auth; i++; lstr = strchr(lstr + 1, '-'); } return 1; } */ /* * We will implement inheritence that is based on what the parent's SEC_DESC * says, but the Owner and Group SIDs can be overwridden from the command line * and additional ACEs can be applied from the command line etc. */ static KEY_SEC_DESC *nt_inherit_security(REG_KEY *key) { if (!key) return NULL; return key->security; } /* * Add a sub-key */ static REG_KEY *nt_add_reg_key_list(REGF *regf, REG_KEY *key, char * name, int create) { int i; REG_KEY *ret = NULL, *tmp = NULL; KEY_LIST *list; char *lname, *c1, *c2; if (!key || !name || !*name) return NULL; list = key->sub_keys; if (!list) { /* Create an empty list */ list = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (REG_KEY_LIST_SIZE - 1) * sizeof(REG_KEY *)); list->key_count = 0; list->max_keys = REG_KEY_LIST_SIZE; } lname = strdup(name); if (!lname) return NULL; c1 = lname; c2 = strchr(c1, '\\'); if (c2) { /* Split here ... */ *c2 = 0; c2++; } for (i = 0; i < list->key_count; i++) { if (strcmp(list->keys[i]->name, c1) == 0) { ret = nt_add_reg_key_list(regf, list->keys[i], c2, create); free(lname); return ret; } } /* * If we reach here we could not find the the first component * so create it ... */ if (list->key_count < list->max_keys){ list->key_count++; } else { /* Create more space in the list ... */ if (!(list = (KEY_LIST *)realloc(list, sizeof(KEY_LIST) + (list->max_keys + REG_KEY_LIST_SIZE - 1) * sizeof(REG_KEY *)))) goto error; list->max_keys += REG_KEY_LIST_SIZE; list->key_count++; } /* * add the new key at the new slot * FIXME: Sort the list someday */ /* * We want to create the key, and then do the rest */ tmp = (REG_KEY *)malloc(sizeof(REG_KEY)); memset(tmp, 0, sizeof(REG_KEY)); tmp->name = strdup(c1); if (!tmp->name) goto error; tmp->owner = key; tmp->type = REG_SUB_KEY; /* * Next, pull security from the parent, but override with * anything passed in on the command line */ tmp->security = nt_inherit_security(key); list->keys[list->key_count - 1] = tmp; if (c2) { ret = nt_add_reg_key_list(regf, key, c2, True); } if (lname) free(lname); return ret; error: if (tmp) free(tmp); if (lname) free(lname); return NULL; } /* * Load and unload a registry file. * * Load, loads it into memory as a tree, while unload sealizes/flattens it */ /* * Get the starting record for NT Registry file */ /* * Where we keep all the regf stuff for one registry. * This is the structure that we use to tie the in memory tree etc * together. By keeping separate structs, we can operate on different * registries at the same time. * Currently, the SK_MAP is an array of mapping structure. * Since we only need this on input and output, we fill in the structure * as we go on input. On output, we know how many SK items we have, so * we can allocate the structure as we need to. * If you add stuff here that is dynamically allocated, add the * appropriate free statements below. */ #define REGF_REGTYPE_NONE 0 #define REGF_REGTYPE_NT 1 #define REGF_REGTYPE_W9X 2 #define TTTONTTIME(r, t1, t2) (r)->last_mod_time.low = (t1); \ (r)->last_mod_time.high = (t2); #define REGF_HDR_BLKSIZ 0x1000 #define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4) #define LOCN(base, f) ((base) + OFF(f)) const VAL_STR reg_type_names[] = { { REG_TYPE_REGSZ, "REG_SZ" }, { REG_TYPE_EXPANDSZ, "REG_EXPAND_SZ" }, { REG_TYPE_BIN, "REG_BIN" }, { REG_TYPE_DWORD, "REG_DWORD" }, { REG_TYPE_MULTISZ, "REG_MULTI_SZ" }, { 0, NULL }, }; static const char *val_to_str(unsigned int val, const VAL_STR *val_array) { int i = 0; if (!val_array) return NULL; while (val_array[i].val && val_array[i].str) { if (val_array[i].val == val) return val_array[i].str; i++; } return NULL; } /* * Convert from UniCode to Ascii ... Does not take into account other lang * Restrict by ascii_max if > 0 */ static int uni_to_ascii(unsigned char *uni, unsigned char *ascii, int ascii_max, int uni_max) { int i = 0; while (i < ascii_max && (uni[i*2] || uni[i*2+1])) { if (uni_max > 0 && (i*2) >= uni_max) break; ascii[i] = uni[i*2]; i++; } ascii[i] = '\0'; return i; } /* * Convert a data value to a string for display */ static unsigned char* data_to_ascii(unsigned char *datap, int len, int type) { unsigned char *asciip; unsigned int i; unsigned short num_nulls; unsigned char* ascii; unsigned int ascii_max; int str_rem; switch (type) { case REG_TYPE_REGSZ: if (verbose) fprintf(stderr, "Len: %d\n", len); ascii_max = sizeof(char)*len; ascii = malloc(ascii_max+4); if(ascii == NULL) return NULL; /* FIXME. This has to be fixed. It has to be UNICODE */ uni_to_ascii(datap, ascii, len, ascii_max); return ascii; break; case REG_TYPE_EXPANDSZ: ascii_max = sizeof(char)*len; ascii = malloc(ascii_max+2); if(ascii == NULL) return NULL; uni_to_ascii(datap, ascii, len, ascii_max); return ascii; break; case REG_TYPE_BIN: ascii_max = sizeof(char)*len*3; ascii = malloc(ascii_max+4); if(ascii == NULL) return NULL; asciip = ascii; for (i=0; (i 0) *asciip = ' '; asciip++; } *asciip = '\0'; return ascii; break; case REG_TYPE_DWORD: ascii_max = sizeof(char)*10; ascii = malloc(ascii_max+1); if(ascii == NULL) return NULL; if (*(int *)datap == 0) snprintf((char*)ascii, ascii_max, "0"); else snprintf((char*)ascii, ascii_max, "0x%x", *(int *)datap); return ascii; break; case REG_TYPE_MULTISZ: ascii_max = sizeof(char)*len*4; ascii = malloc(ascii_max+4); if(ascii == NULL) return NULL; /* Reads until it reaches 4 consecutive NULLs, * which is two nulls in unicode, or until it reaches len, or until we * run out of buffer. The latter should never happen, but we shouldn't * trust our file to have the right lengths/delimiters. */ asciip = ascii; num_nulls = 0; str_rem = ascii_max; for(i=0; (i < len) && (num_nulls < 4) && str_rem > 0; i++) { asciip += snprintf((char*)asciip, str_rem, "%02x ", *(unsigned char *)(datap+i)); str_rem -= 3; if(*(datap+i) == 0) num_nulls++; else num_nulls = 0; } *asciip = '\0'; return ascii; break; default: return NULL; break; } return NULL; } static REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size, REG_KEY *parent); static int nt_set_regf_input_file(REGF *regf, char *filename) { return ((regf->regfile_name = strdup(filename)) != NULL); } /* Create a regf structure and init it */ static REGF *nt_create_regf(void) { REGF *tmp = (REGF *)malloc(sizeof(REGF)); if (!tmp) return tmp; memset(tmp, 0, sizeof(REGF)); tmp->owner_sid_str = def_owner_sid_str; return tmp; } /* Get the header of the registry. Return a pointer to the structure * If the mmap'd area has not been allocated, then mmap the input file */ static REGF_HDR *nt_get_regf_hdr(REGF *regf) { if (!regf) return NULL; /* What about errors */ if (!regf->regfile_name) return NULL; /* What about errors */ if (!regf->base) { /* Try to mmap etc the file */ if ((regf->fd = open(regf->regfile_name, O_RDONLY, 0000)) <0) { return NULL; /* What about errors? */ } if (fstat(regf->fd, ®f->sbuf) < 0) { return NULL; } regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0); if ((int)regf->base == 1) { fprintf(stderr, "Could not mmap file: %s, %s\n", regf->regfile_name, strerror(errno)); return NULL; } } /* * At this point, regf->base != NULL, and we should be able to read the * header */ assert(regf->base != NULL); return (REGF_HDR *)regf->base; } /* * Validate a regf header * For now, do nothing, but we should check the checksum */ static int valid_regf_hdr(REGF_HDR *regf_hdr) { if (!regf_hdr) return 0; return 1; } /* * Process an SK header ... * Every time we see a new one, add it to the map. Otherwise, just look it up. * We will do a simple linear search for the moment, since many KEYs have the * same security descriptor. * We allocate the map in increments of 10 entries. */ /* * Create a new entry in the map, and increase the size of the map if needed */ static SK_MAP *alloc_sk_map_entry(REGF *regf, KEY_SEC_DESC *tmp, int sk_off) { if (!regf->sk_map) { /* Allocate a block of 10 */ regf->sk_map = (SK_MAP *)malloc(sizeof(SK_MAP) * 10); if (!regf->sk_map) { free(tmp); return NULL; } regf->sk_map_size = 10; regf->sk_count = 1; (regf->sk_map)[0].sk_off = sk_off; (regf->sk_map)[0].key_sec_desc = tmp; } else { /* Simply allocate a new slot, unless we have to expand the list */ int ndx = regf->sk_count; if (regf->sk_count >= regf->sk_map_size) { regf->sk_map = (SK_MAP *)realloc(regf->sk_map, (regf->sk_map_size + 10)*sizeof(SK_MAP)); if (!regf->sk_map) { free(tmp); return NULL; } /* * ndx already points at the first entry of the new block */ regf->sk_map_size += 10; } (regf->sk_map)[ndx].sk_off = sk_off; (regf->sk_map)[ndx].key_sec_desc = tmp; regf->sk_count++; } return regf->sk_map; } /* * Search for a KEY_SEC_DESC in the sk_map, but don't create one if not * found */ static KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off) { int i; if (!sk_map) return NULL; for (i = 0; i < count; i++) { if (sk_map[i].sk_off == sk_off) return sk_map[i].key_sec_desc; } return NULL; } /* * Allocate a KEY_SEC_DESC if we can't find one in the map */ static KEY_SEC_DESC *lookup_create_sec_key(REGF *regf, SK_MAP *sk_map, int sk_off) { KEY_SEC_DESC *tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off); if (tmp) { return tmp; } else { /* Allocate a new one */ tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC)); if (!tmp) { return NULL; } memset(tmp, 0, sizeof(KEY_SEC_DESC)); /* Neatly sets offset to 0 */ tmp->state = SEC_DESC_RES; if (!alloc_sk_map_entry(regf, tmp, sk_off)) { return NULL; } return tmp; } } /* * Allocate storage and duplicate a SID * We could allocate the SID to be only the size needed, but I am too lazy. */ static sid_t *dup_sid(sid_t *sid) { sid_t *tmp = (sid_t *)malloc(sizeof(sid_t)); int i; if (!tmp) return NULL; tmp->ver = sid->ver; tmp->auths = sid->auths; for (i=0; i<6; i++) { tmp->auth[i] = sid->auth[i]; } for (i=0; iauths&&isub_auths[i] = sid->sub_auths[i]; } return tmp; } /* * Allocate space for an ACE and duplicate the registry encoded one passed in */ static ACE *dup_ace(REG_ACE *ace) { ACE *tmp = NULL; tmp = (ACE *)malloc(sizeof(ACE)); if (!tmp) return NULL; tmp->type = CVAL(&ace->type); tmp->flags = CVAL(&ace->flags); tmp->perms = IVAL(&ace->perms); tmp->trustee = dup_sid(&ace->trustee); return tmp; } /* * Allocate space for an ACL and duplicate the registry encoded one passed in */ static ACL *dup_acl(REG_ACL *acl) { ACL *tmp = NULL; REG_ACE* ace; int i, num_aces; num_aces = IVAL(&acl->num_aces); tmp = (ACL *)malloc(sizeof(ACL) + (num_aces - 1)*sizeof(ACE *)); if (!tmp) return NULL; tmp->num_aces = num_aces; tmp->refcnt = 1; tmp->rev = SVAL(&acl->rev); if (verbose) fprintf(stdout, "ACL: refcnt: %u, rev: %u\n", tmp->refcnt, tmp->rev); ace = (REG_ACE *)&acl->aces; for (i=0; iaces[i] = dup_ace(ace); ace = (REG_ACE *)((char *)ace + SVAL(&ace->length)); /* XXX: FIXME, should handle malloc errors */ } return tmp; } static SEC_DESC *process_sec_desc(REGF *regf, REG_SEC_DESC *sec_desc) { SEC_DESC *tmp = NULL; tmp = (SEC_DESC *)malloc(sizeof(SEC_DESC)); if (!tmp) { return NULL; } tmp->rev = SVAL(&sec_desc->rev); tmp->type = SVAL(&sec_desc->type); if (verbose) fprintf(stdout, "SEC_DESC Rev: %0X, Type: %0X\n", tmp->rev, tmp->type); if (verbose) fprintf(stdout, "SEC_DESC Owner Off: %0X\n", IVAL(&sec_desc->owner_off)); if (verbose) fprintf(stdout, "SEC_DESC Group Off: %0X\n", IVAL(&sec_desc->group_off)); if (verbose) fprintf(stdout, "SEC_DESC DACL Off: %0X\n", IVAL(&sec_desc->dacl_off)); tmp->owner = dup_sid((sid_t *)((char *)sec_desc + IVAL(&sec_desc->owner_off))); if (!tmp->owner) { free(tmp); return NULL; } tmp->group = dup_sid((sid_t *)((char *)sec_desc + IVAL(&sec_desc->group_off))); if (!tmp->group) { free(tmp); return NULL; } /* Now pick up the SACL and DACL */ if (sec_desc->sacl_off) tmp->sacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->sacl_off))); else tmp->sacl = NULL; if (sec_desc->dacl_off) tmp->dacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->dacl_off))); else tmp->dacl = NULL; return tmp; } static KEY_SEC_DESC *process_sk(REGF *regf, SK_HDR *sk_hdr, int sk_off, int size) { KEY_SEC_DESC *tmp = NULL; int sk_next_off, sk_prev_off, sk_size; REG_SEC_DESC *sec_desc; if (!sk_hdr) return NULL; if (SVAL(&sk_hdr->SK_ID) != REG_SK_ID) { fprintf(stderr, "Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr, regf->regfile_name); return NULL; } if (-size < (sk_size = IVAL(&sk_hdr->rec_size))) { fprintf(stderr, "Incorrect SK record size: %d vs %d. %s\n", -size, sk_size, regf->regfile_name); return NULL; } /* * Now, we need to look up the SK Record in the map, and return it * Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can * use that */ if (regf->sk_map && ((tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off)) != NULL) && (tmp->state == SEC_DESC_OCU)) { tmp->ref_cnt++; return tmp; } /* Here, we have an item in the map that has been reserved, or tmp==NULL. */ assert(tmp == NULL || (tmp && tmp->state != SEC_DESC_NON)); /* * Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the * new KEY_SEC_DESC to the mapping structure, since the offset supplied is * the actual offset of structure. The same offset will be used by * all future references to this structure * We could put all this unpleasantness in a function. */ if (!tmp) { tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC)); if (!tmp) return NULL; memset(tmp, 0, sizeof(KEY_SEC_DESC)); /* * Allocate an entry in the SK_MAP ... * We don't need to free tmp, because that is done for us if the * sm_map entry can't be expanded when we need more space in the map. */ if (!alloc_sk_map_entry(regf, tmp, sk_off)) { return NULL; } } tmp->ref_cnt++; tmp->state = SEC_DESC_OCU; /* * Now, process the actual sec desc and plug the values in */ sec_desc = (REG_SEC_DESC *)&sk_hdr->sec_desc[0]; tmp->sec_desc = process_sec_desc(regf, sec_desc); /* * Now forward and back links. Here we allocate an entry in the sk_map * if it does not exist, and mark it reserved */ sk_prev_off = IVAL(&sk_hdr->prev_off); tmp->prev = lookup_create_sec_key(regf, regf->sk_map, sk_prev_off); assert(tmp->prev != NULL); sk_next_off = IVAL(&sk_hdr->next_off); tmp->next = lookup_create_sec_key(regf, regf->sk_map, sk_next_off); assert(tmp->next != NULL); return tmp; } /* * Process a VK header and return a value */ static VAL_KEY *process_vk(REGF *regf, VK_HDR *vk_hdr, int size) { char val_name[1024]; int nam_len, dat_len, flag, dat_type, dat_off, vk_id; const char *val_type; VAL_KEY *tmp = NULL; if (!vk_hdr) return NULL; if ((vk_id = SVAL(&vk_hdr->VK_ID)) != REG_VK_ID) { fprintf(stderr, "Unrecognized VK header ID: %0X, block: %0X, %s\n", vk_id, (int)vk_hdr, regf->regfile_name); return NULL; } nam_len = SVAL(&vk_hdr->nam_len); val_name[nam_len] = '\0'; flag = SVAL(&vk_hdr->flag); dat_type = IVAL(&vk_hdr->dat_type); dat_len = IVAL(&vk_hdr->dat_len); /* If top bit, offset contains data */ dat_off = IVAL(&vk_hdr->dat_off); tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY)); if (!tmp) { goto error; } memset(tmp, 0, sizeof(VAL_KEY)); tmp->has_name = flag; tmp->data_type = dat_type; if (flag & 0x01) { strncpy(val_name, vk_hdr->dat_name, nam_len); tmp->name = strdup(val_name); if (!tmp->name) { goto error; } } else strncpy(val_name, "", 10); /* * Allocate space and copy the data as a BLOB */ if (dat_len) { char *dtmp = (char *)malloc(dat_len&0x7FFFFFFF); if (!dtmp) { goto error; } tmp->data_blk = dtmp; if ((dat_len&0x80000000) == 0) { /* The data is pointed to by the offset */ char *dat_ptr = LOCN(regf->base, dat_off); /* XXX: replace with memcpy */ bcopy(dat_ptr, dtmp, dat_len); } else { /* The data is in the offset or type */ /* * FIXME. * Some registry files seem to have wierd fields. If top bit is set, * but len is 0, the type seems to be the value ... * Not sure how to handle this last type for the moment ... */ dat_len = dat_len & 0x7FFFFFFF; /* XXX: replace with memcpy */ bcopy(&dat_off, dtmp, dat_len); } tmp->data_len = dat_len; } val_type = val_to_str(dat_type, reg_type_names); /* * We need to save the data area as well */ if (verbose) fprintf(stdout, " %s : %s : \n", val_name, val_type); return tmp; error: if (tmp) nt_delete_val_key(tmp); return NULL; } /* * Process a VL Header and return a list of values */ static VAL_LIST *process_vl(REGF *regf, VL_TYPE vl, int count, int size) { int i, vk_off; VK_HDR *vk_hdr; VAL_LIST *tmp = NULL; if (!vl) return NULL; if (-size < (count+1)*sizeof(int)){ fprintf(stderr, "Error in VL header format. Size less than space required. %d\n", -size); return NULL; } tmp = (VAL_LIST *)malloc(sizeof(VAL_LIST) + (count - 1) * sizeof(VAL_KEY *)); if (!tmp) { goto error; } for (i=0; ibase, vk_off); tmp->vals[i] = process_vk(regf, vk_hdr, BLK_SIZE(vk_hdr)); if (!tmp->vals[i]){ goto error; } } tmp->val_count = count; tmp->max_vals = count; return tmp; error: /* XXX: FIXME, free the partially allocated structure */ return NULL; } /* * Process an LF Header and return a list of sub-keys */ static KEY_LIST *process_lf(REGF *regf, LF_HDR *lf_hdr, int size, REG_KEY *parent) { int count, i, nk_off; unsigned int lf_id; KEY_LIST *tmp; if (!lf_hdr) return NULL; if ((lf_id = SVAL(&lf_hdr->LF_ID)) != REG_LF_ID) { fprintf(stderr, "Unrecognized LF Header format: %0X, Block: %0X, %s.\n", lf_id, (int)lf_hdr, regf->regfile_name); return NULL; } assert(size < 0); count = SVAL(&lf_hdr->key_count); if (verbose) fprintf(stdout, "Key Count: %u\n", count); if (count <= 0) return NULL; /* Now, we should allocate a KEY_LIST struct and fill it in ... */ tmp = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (count - 1) * sizeof(REG_KEY *)); if (!tmp) { goto error; } tmp->key_count = count; tmp->max_keys = count; for (i=0; ihr[i].nk_off); if (verbose) fprintf(stdout, "NK Offset: %0X\n", nk_off); nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off); tmp->keys[i] = nt_get_key_tree(regf, nk_hdr, BLK_SIZE(nk_hdr), parent); if (!tmp->keys[i]) { goto error; } } return tmp; error: /*if (tmp) nt_delete_key_list(tmp, False);*/ return NULL; } /* * This routine is passed an NK_HDR pointer and retrieves the entire tree * from there down. It returns a REG_KEY *. */ static REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size, REG_KEY *parent) { REG_KEY *tmp = NULL, *own; int name_len, clsname_len, lf_off, val_off, val_count, sk_off, own_off; unsigned int nk_id; LF_HDR *lf_hdr; VL_TYPE *vl; SK_HDR *sk_hdr; char key_name[1024]; unsigned char cls_name[1024]; if (!nk_hdr) return NULL; if ((nk_id = SVAL(&nk_hdr->NK_ID)) != REG_NK_ID) { fprintf(stderr, "Unrecognized NK Header format: %08X, Block: %0X. %s\n", nk_id, (int)nk_hdr, regf->regfile_name); return NULL; } assert(size < 0); name_len = SVAL(&nk_hdr->nam_len); clsname_len = SVAL(&nk_hdr->clsnam_len); /* * The value of -size should be ge * (sizeof(NK_HDR) - 1 + name_len) * The -1 accounts for the fact that we included the first byte of * the name in the structure. clsname_len is the length of the thing * pointed to by clsnam_off */ if (-size < (sizeof(NK_HDR) - 1 + name_len)) { fprintf(stderr, "Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr); fprintf(stderr, "Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n", sizeof(NK_HDR), name_len, clsname_len); /*return NULL;*/ } if (verbose) fprintf(stdout, "NK HDR: Name len: %d, class name len: %d\n", name_len, clsname_len); /* Fish out the key name and process the LF list */ assert(name_len < sizeof(key_name)); /* Allocate the key struct now */ tmp = (REG_KEY *)malloc(sizeof(REG_KEY)); if (!tmp) return tmp; memset(tmp, 0, sizeof(REG_KEY)); tmp->type = (SVAL(&nk_hdr->type)==0x2C?REG_ROOT_KEY:REG_SUB_KEY); strncpy(key_name, nk_hdr->key_nam, name_len); key_name[name_len] = '\0'; if (verbose) fprintf(stdout, "Key name: %s\n", key_name); tmp->name = strdup(key_name); if (!tmp->name) { goto error; } /* * Fish out the class name, it is in UNICODE, while the key name is * ASCII :-) */ if (clsname_len) { /* Just print in Ascii for now */ unsigned char *clsnamep; unsigned int clsnam_off; clsnam_off = IVAL(&nk_hdr->clsnam_off); clsnamep = (unsigned char*)LOCN(regf->base, clsnam_off); if (verbose) fprintf(stdout, "Class Name Offset: %0X\n", clsnam_off); memset(cls_name, 0, clsname_len); uni_to_ascii(clsnamep, cls_name, sizeof(cls_name), clsname_len); /* * I am keeping class name as an ascii string for the moment. * That means it needs to be converted on output. * It will also piss off people who need Unicode/UTF-8 strings. Sorry. * XXX: FIXME */ tmp->class_name = strdup((char*)cls_name); if (!tmp->class_name) { goto error; } if (verbose) fprintf(stdout, " Class Name: %s\n", cls_name); } /* * Process the owner offset ... */ own_off = IVAL(&nk_hdr->own_off); own = (REG_KEY *)LOCN(regf->base, own_off); if (verbose) fprintf(stdout, "Owner Offset: %0X\n", own_off); if (verbose) fprintf(stdout, " Owner locn: %0X, Our locn: %0X\n", (unsigned int)own, (unsigned int)nk_hdr); /* * We should verify that the owner field is correct ... * for now, we don't worry ... */ tmp->owner = parent; /* * If there are any values, process them here */ val_count = IVAL(&nk_hdr->val_cnt); if (verbose) fprintf(stdout, "Val Count: %d\n", val_count); if (val_count) { val_off = IVAL(&nk_hdr->val_off); vl = (VL_TYPE *)LOCN(regf->base, val_off); if (verbose) fprintf(stdout, "Val List Offset: %0X\n", val_off); tmp->values = process_vl(regf, *vl, val_count, BLK_SIZE(vl)); if (!tmp->values) { goto error; } } /* * Also handle the SK header ... */ sk_off = IVAL(&nk_hdr->sk_off); sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off); if (verbose) fprintf(stdout, "SK Offset: %0X\n", sk_off); if (sk_off != -1) { tmp->security = process_sk(regf, sk_hdr, sk_off, BLK_SIZE(sk_hdr)); } lf_off = IVAL(&nk_hdr->lf_off); if (verbose) fprintf(stdout, "SubKey list offset: %0X\n", lf_off); /* * No more subkeys if lf_off == -1 */ if (lf_off != -1) { lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off); tmp->sub_keys = process_lf(regf, lf_hdr, BLK_SIZE(lf_hdr), tmp); if (!tmp->sub_keys) goto error; } return tmp; error: /*if (tmp) nt_delete_reg_key(tmp, False);*/ return NULL; } static int nt_load_registry(REGF *regf) { REGF_HDR *regf_hdr; unsigned int regf_id, hbin_id; HBIN_HDR *hbin_hdr; NK_HDR *first_key; /* Get the header */ if ((regf_hdr = nt_get_regf_hdr(regf)) == NULL) { return -1; } /* Now process that header and start to read the rest in */ if ((regf_id = IVAL(®f_hdr->REGF_ID)) != REG_REGF_ID) { fprintf(stderr, "Unrecognized NT registry header id: %0X, %s\n", regf_id, regf->regfile_name); return -1; } /* * Validate the header ... */ if (!valid_regf_hdr(regf_hdr)) { fprintf(stderr, "Registry file header does not validate: %s\n", regf->regfile_name); return -1; } /* Update the last mod date, and then go get the first NK record and on */ TTTONTTIME(regf, IVAL(®f_hdr->tim1), IVAL(®f_hdr->tim2)); /* * The hbin hdr seems to be just uninteresting garbage. Check that * it is there, but that is all. */ hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ); if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID)) != REG_HBIN_ID) { fprintf(stderr, "Unrecognized registry hbin hdr ID: %0X, %s\n", hbin_id, regf->regfile_name); return -1; } /* * Get a pointer to the first key from the hreg_hdr */ if (verbose) fprintf(stdout, "First Key: %0X\n", IVAL(®f_hdr->first_key)); first_key = (NK_HDR *)LOCN(regf->base, IVAL(®f_hdr->first_key)); if (verbose) fprintf(stdout, "First Key Offset: %0X\n", IVAL(®f_hdr->first_key)); if (verbose) fprintf(stdout, "Data Block Size: %d\n", IVAL(®f_hdr->dblk_size)); if (verbose) fprintf(stdout, "Offset to next hbin block: %0X\n", IVAL(&hbin_hdr->off_to_next)); if (verbose) fprintf(stdout, "HBIN block size: %0X\n", IVAL(&hbin_hdr->blk_size)); /* * Now, get the registry tree by processing that NK recursively */ regf->root = nt_get_key_tree(regf, first_key, BLK_SIZE(first_key), NULL); assert(regf->root != NULL); /* * Unmap the registry file, as we might want to read in another * tree etc. */ if (regf->base) munmap(regf->base, regf->sbuf.st_size); regf->base = NULL; close(regf->fd); /* Ignore the error :-) */ return 1; } /* * Routines to parse a REGEDIT4 file * * The file consists of: * * REGEDIT4 * \[[-]key-path\]\n * * * * Format: * [cmd:]name=type:value * * cmd = a|d|c|add|delete|change|as|ds|cs * * There can be more than one key-path and value-spec. * * Since we want to support more than one type of file format, we * construct a command-file structure that keeps info about the command file */ #define FMT_UNREC -1 #define FMT_REGEDIT4 0 #define FMT_EDITREG1_1 1 #define FMT_STRING_REGEDIT4 "REGEDIT4" #define FMT_STRING_EDITREG1_0 "EDITREG1.0" #define CMD_NONE 0 #define CMD_ADD_KEY 1 #define CMD_DEL_KEY 2 #define CMD_KEY 1 #define CMD_VAL 2 typedef struct val_spec_list { struct val_spec_list *next; char *name; int type; char *val; /* Kept as a char string, really? */ } VAL_SPEC_LIST; typedef struct command_s { int cmd; char *key; int val_count; VAL_SPEC_LIST *val_spec_list, *val_spec_last; } CMD; typedef struct cmd_line { int len, line_len; char *line; } CMD_LINE; #define INIT_ALLOC 10 /* prints a key */ static int print_key(const char *path, char *name, char *class_name, int root, int terminal, int vals, char* newline) { if (full_print) fprintf(stdout, "%s%s\\%s", path, name, newline); return 1; } /* * Sec Desc print functions */ static void print_type(unsigned char type) { switch (type) { case 0x00: fprintf(stdout, " ALLOW"); break; case 0x01: fprintf(stdout, " DENY"); break; case 0x02: fprintf(stdout, " AUDIT"); break; case 0x03: fprintf(stdout, " ALARM"); break; case 0x04: fprintf(stdout, "ALLOW CPD"); break; case 0x05: fprintf(stdout, "OBJ ALLOW"); break; case 0x06: fprintf(stdout, " OBJ DENY"); break; default: fprintf(stdout, " UNKNOWN"); break; } } static void print_flags(unsigned char flags) { char flg_output[21]; int some = 0; flg_output[0] = 0; if (!flags) { fprintf(stdout, " "); return; } if (flags & 0x01) { if (some) strcat(flg_output, ","); some = 1; strcat(flg_output, "OI"); } if (flags & 0x02) { if (some) strcat(flg_output, ","); some = 1; strcat(flg_output, "CI"); } if (flags & 0x04) { if (some) strcat(flg_output, ","); some = 1; strcat(flg_output, "NP"); } if (flags & 0x08) { if (some) strcat(flg_output, ","); some = 1; strcat(flg_output, "IO"); } if (flags & 0x10) { if (some) strcat(flg_output, ","); some = 1; strcat(flg_output, "IA"); } if (flags == 0xF) { if (some) strcat(flg_output, ","); some = 1; strcat(flg_output, "VI"); } fprintf(stdout, " %s", flg_output); } static void print_perms(int perms) { fprintf(stdout, " %8X", perms); } static void print_sid(sid_t *sid) { int i, comps = sid->auths; fprintf(stdout, "S-%u-%u", sid->ver, sid->auth[5]); for (i = 0; i < comps; i++) fprintf(stdout, "-%u", sid->sub_auths[i]); /*fprintf(stdout, "\n");*/ } static void print_acl(ACL *acl, const char *prefix) { int i; for (i = 0; i < acl->num_aces; i++) { fprintf(stdout, ";;%s", prefix); print_type(acl->aces[i]->type); print_flags(acl->aces[i]->flags); print_perms(acl->aces[i]->perms); fprintf(stdout, " "); print_sid(acl->aces[i]->trustee); } } static int print_sec(SEC_DESC *sec_desc) { if (!print_security) return 1; fprintf(stdout, ";; SECURITY\n"); fprintf(stdout, ";; Owner: "); print_sid(sec_desc->owner); fprintf(stdout, ";; Group: "); print_sid(sec_desc->group); if (sec_desc->sacl) { fprintf(stdout, ";; SACL:\n"); print_acl(sec_desc->sacl, " "); } if (sec_desc->dacl) { fprintf(stdout, ";; DACL:\n"); print_acl(sec_desc->dacl, " "); } return 1; } /* * Value print function here ... */ static int print_val(const char *path, char *val_name, int val_type, int data_len, void *data_blk, int terminal, int first, int last) { unsigned char* data_asc; if(!val_name) val_name = ""; fprintf(stdout, "%s", path); data_asc = data_to_ascii((unsigned char *)data_blk, data_len, val_type); fprintf(stdout, "%s:%s=%s\n", val_name, val_to_str(val_type, reg_type_names), data_asc); free(data_asc); return 1; } static void usage(void) { fprintf(stderr, "Usage: readreg [-f] [-v] [-p] [-k] [-s]" "\n"); fprintf(stderr, "Version: 0.1\n\n"); fprintf(stderr, "\n\t-v\t sets verbose mode"); fprintf(stderr, "\n\t-f\t a simple prefix filter."); fprintf(stderr, "\n\t-p\t prints the registry"); fprintf(stderr, "\n\t-s\t prints security descriptors"); fprintf(stderr, "\n"); } int main(int argc, char *argv[]) { REGF *regf; extern char *optarg; extern int optind; int opt; int regf_opt = 1; char* filter_prefix = ""; if (argc < 2) { usage(); exit(1); } /* * Now, process the arguments */ while ((opt = getopt(argc, argv, "svkf:o:c:")) != EOF) { switch (opt) { case 'f': /*full_print = 1;*/ filter_prefix = strdup(optarg); regf_opt++; break; case 's': print_security++; full_print++; regf_opt++; break; case 'v': verbose++; regf_opt++; break; case 'k': regf_opt++; break; default: usage(); exit(1); break; } } /* * We only want to complain about the lack of a default owner SID if * we need one. This approximates that need */ if (!def_owner_sid_str) { def_owner_sid_str = "S-1-5-21-1-2-3-4"; if (verbose) fprintf(stderr, "Warning, default owner SID not set. Setting to %s\n", def_owner_sid_str); } if ((regf = nt_create_regf()) == NULL) { fprintf(stderr, "Could not create registry object: %s\n", strerror(errno)); exit(2); } if (regf_opt < argc) { /* We have a registry file */ if (!nt_set_regf_input_file(regf, argv[regf_opt])) { fprintf(stderr, "Could not set name of registry file: %s, %s\n", argv[regf_opt], strerror(errno)); exit(3); } /* Now, open it, and bring it into memory :-) */ if (nt_load_registry(regf) < 0) { fprintf(stderr, "Could not load registry: %s\n", argv[1]); exit(4); } } /* * At this point, we should have a registry in memory and should be able * to iterate over it. */ nt_key_iterator(regf, regf->root, 0, "", filter_prefix); /* XXX: debugging; remove me. */ printf("%d,%d,%d\n", str_is_prefix("foo", "foobar"), str_is_prefix("", "xyz"), str_is_prefix("foo", "foo")); return 0; }