1 | /*
|
---|
2 | * $Id: reglookup.c 17 2005-06-04 22:08:03Z tim $
|
---|
3 | *
|
---|
4 | * A utility to read a Windows NT/2K etc registry file.
|
---|
5 | *
|
---|
6 | * This code was taken from Richard Sharpe''s editreg utility, in the
|
---|
7 | * Samba CVS tree. It has since been simplified and turned into a
|
---|
8 | * strictly read-only utility.
|
---|
9 | *
|
---|
10 | * Copyright (C) 2005 Timothy D. Morgan
|
---|
11 | * Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com
|
---|
12 | *
|
---|
13 | * This program is free software; you can redistribute it and/or modify
|
---|
14 | * it under the terms of the GNU General Public License as published by
|
---|
15 | * the Free Software Foundation; version 2 of the License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful,
|
---|
18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
20 | * GNU General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, write to the Free Software
|
---|
24 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
25 | */
|
---|
26 |
|
---|
27 | /*************************************************************************
|
---|
28 |
|
---|
29 | A note from Richard Sharpe:
|
---|
30 | Many of the ideas in here come from other people and software.
|
---|
31 | I first looked in Wine in misc/registry.c and was also influenced by
|
---|
32 | http://www.wednesday.demon.co.uk/dosreg.html
|
---|
33 |
|
---|
34 | Which seems to contain comments from someone else. I reproduce them here
|
---|
35 | incase the site above disappears. It actually comes from
|
---|
36 | http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt.
|
---|
37 |
|
---|
38 | NOTE: the comments he refers to have been moved to doc/winntreg.txt
|
---|
39 |
|
---|
40 | **************************************************************************/
|
---|
41 |
|
---|
42 |
|
---|
43 | #include <stdio.h>
|
---|
44 | #include <stdlib.h>
|
---|
45 | #include <stdbool.h>
|
---|
46 | #include <errno.h>
|
---|
47 | #include <assert.h>
|
---|
48 | #include <sys/types.h>
|
---|
49 | #include <sys/stat.h>
|
---|
50 | #include <unistd.h>
|
---|
51 | #include <sys/mman.h>
|
---|
52 | #include <strings.h>
|
---|
53 | #include <string.h>
|
---|
54 | #include <fcntl.h>
|
---|
55 |
|
---|
56 | #define False 0
|
---|
57 | #define True 1
|
---|
58 | #define REG_KEY_LIST_SIZE 10
|
---|
59 |
|
---|
60 | /*
|
---|
61 | * Structures for dealing with the on-disk format of the registry
|
---|
62 | */
|
---|
63 |
|
---|
64 | #define IVAL(buf) ((unsigned int) \
|
---|
65 | (unsigned int)*((unsigned char *)(buf)+3)<<24| \
|
---|
66 | (unsigned int)*((unsigned char *)(buf)+2)<<16| \
|
---|
67 | (unsigned int)*((unsigned char *)(buf)+1)<<8| \
|
---|
68 | (unsigned int)*((unsigned char *)(buf)+0))
|
---|
69 |
|
---|
70 | #define SVAL(buf) ((unsigned short) \
|
---|
71 | (unsigned short)*((unsigned char *)(buf)+1)<<8| \
|
---|
72 | (unsigned short)*((unsigned char *)(buf)+0))
|
---|
73 |
|
---|
74 | #define CVAL(buf) ((unsigned char)*((unsigned char *)(buf)))
|
---|
75 |
|
---|
76 | #define SIVAL(buf, val) \
|
---|
77 | ((((unsigned char *)(buf))[0])=(unsigned char)((val)&0xFF),\
|
---|
78 | (((unsigned char *)(buf))[1])=(unsigned char)(((val)>>8)&0xFF),\
|
---|
79 | (((unsigned char *)(buf))[2])=(unsigned char)(((val)>>16)&0xFF),\
|
---|
80 | (((unsigned char *)(buf))[3])=(unsigned char)((val)>>24))
|
---|
81 |
|
---|
82 | #define SSVAL(buf, val) \
|
---|
83 | ((((unsigned char *)(buf))[0])=(unsigned char)((val)&0xFF),\
|
---|
84 | (((unsigned char *)(buf))[1])=(unsigned char)((val)>>8))
|
---|
85 |
|
---|
86 | static int verbose = 0;
|
---|
87 | static int print_security = 0;
|
---|
88 | static int full_print = 0;
|
---|
89 | static const char *def_owner_sid_str = NULL;
|
---|
90 |
|
---|
91 | /*
|
---|
92 | * These definitions are for the in-memory registry structure.
|
---|
93 | * It is a tree structure that mimics what you see with tools like regedit
|
---|
94 | */
|
---|
95 |
|
---|
96 | /*
|
---|
97 | * DateTime struct for Windows
|
---|
98 | */
|
---|
99 |
|
---|
100 | typedef struct date_time_s {
|
---|
101 | unsigned int low, high;
|
---|
102 | } NTTIME;
|
---|
103 |
|
---|
104 | /*
|
---|
105 | * Definition of a Key. It has a name, classname, date/time last modified,
|
---|
106 | * sub-keys, values, and a security descriptor
|
---|
107 | */
|
---|
108 |
|
---|
109 | #define REG_ROOT_KEY 1
|
---|
110 | #define REG_SUB_KEY 2
|
---|
111 | #define REG_SYM_LINK 3
|
---|
112 |
|
---|
113 | typedef struct key_sec_desc_s KEY_SEC_DESC;
|
---|
114 |
|
---|
115 | typedef struct reg_key_s {
|
---|
116 | char *name; /* Name of the key */
|
---|
117 | char *class_name;
|
---|
118 | int type; /* One of REG_ROOT_KEY or REG_SUB_KEY */
|
---|
119 | NTTIME last_mod; /* Time last modified */
|
---|
120 | struct reg_key_s *owner;
|
---|
121 | struct key_list_s *sub_keys;
|
---|
122 | struct val_list_s *values;
|
---|
123 | KEY_SEC_DESC *security;
|
---|
124 | unsigned int offset; /* Offset of the record in the file */
|
---|
125 | } REG_KEY;
|
---|
126 |
|
---|
127 | /*
|
---|
128 | * The KEY_LIST struct lists sub-keys.
|
---|
129 | */
|
---|
130 |
|
---|
131 | typedef struct key_list_s {
|
---|
132 | int key_count;
|
---|
133 | int max_keys;
|
---|
134 | REG_KEY *keys[1];
|
---|
135 | } KEY_LIST;
|
---|
136 |
|
---|
137 | typedef struct val_key_s {
|
---|
138 | char *name;
|
---|
139 | int has_name;
|
---|
140 | int data_type;
|
---|
141 | int data_len;
|
---|
142 | void *data_blk; /* Might want a separate block */
|
---|
143 | } VAL_KEY;
|
---|
144 |
|
---|
145 | typedef struct val_list_s {
|
---|
146 | int val_count;
|
---|
147 | int max_vals;
|
---|
148 | VAL_KEY *vals[1];
|
---|
149 | } VAL_LIST;
|
---|
150 |
|
---|
151 | #ifndef MAXSUBAUTHS
|
---|
152 | #define MAXSUBAUTHS 15
|
---|
153 | #endif
|
---|
154 |
|
---|
155 | typedef struct sid_s {
|
---|
156 | unsigned char ver, auths;
|
---|
157 | unsigned char auth[6];
|
---|
158 | unsigned int sub_auths[MAXSUBAUTHS];
|
---|
159 | } sid_t;
|
---|
160 |
|
---|
161 | typedef struct ace_struct_s {
|
---|
162 | unsigned char type, flags;
|
---|
163 | unsigned int perms; /* Perhaps a better def is in order */
|
---|
164 | sid_t *trustee;
|
---|
165 | } ACE;
|
---|
166 |
|
---|
167 | typedef struct acl_struct_s {
|
---|
168 | unsigned short rev, refcnt;
|
---|
169 | unsigned short num_aces;
|
---|
170 | ACE *aces[1];
|
---|
171 | } ACL;
|
---|
172 |
|
---|
173 | typedef struct sec_desc_s {
|
---|
174 | unsigned int rev, type;
|
---|
175 | sid_t *owner, *group;
|
---|
176 | ACL *sacl, *dacl;
|
---|
177 | } SEC_DESC;
|
---|
178 |
|
---|
179 | #define SEC_DESC_NON 0
|
---|
180 | #define SEC_DESC_RES 1
|
---|
181 | #define SEC_DESC_OCU 2
|
---|
182 | #define SEC_DESC_NBK 3
|
---|
183 | typedef struct sk_struct SK_HDR;
|
---|
184 | struct key_sec_desc_s {
|
---|
185 | struct key_sec_desc_s *prev, *next;
|
---|
186 | int ref_cnt;
|
---|
187 | int state;
|
---|
188 | int offset;
|
---|
189 | SK_HDR *sk_hdr; /* This means we must keep the registry in memory */
|
---|
190 | SEC_DESC *sec_desc;
|
---|
191 | };
|
---|
192 |
|
---|
193 | /*
|
---|
194 | * All of the structures below actually have a four-byte length before them
|
---|
195 | * which always seems to be negative. The following macro retrieves that
|
---|
196 | * size as an integer
|
---|
197 | */
|
---|
198 |
|
---|
199 | #define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1))
|
---|
200 |
|
---|
201 | typedef unsigned int DWORD;
|
---|
202 | typedef unsigned short WORD;
|
---|
203 |
|
---|
204 | #define REG_REGF_ID 0x66676572
|
---|
205 |
|
---|
206 | typedef struct regf_block {
|
---|
207 | DWORD REGF_ID; /* regf */
|
---|
208 | DWORD uk1;
|
---|
209 | DWORD uk2;
|
---|
210 | DWORD tim1, tim2;
|
---|
211 | DWORD uk3; /* 1 */
|
---|
212 | DWORD uk4; /* 3 */
|
---|
213 | DWORD uk5; /* 0 */
|
---|
214 | DWORD uk6; /* 1 */
|
---|
215 | DWORD first_key; /* offset */
|
---|
216 | unsigned int dblk_size;
|
---|
217 | DWORD uk7[116]; /* 1 */
|
---|
218 | DWORD chksum;
|
---|
219 | } REGF_HDR;
|
---|
220 |
|
---|
221 | typedef struct hbin_sub_struct {
|
---|
222 | DWORD dblocksize;
|
---|
223 | char data[1];
|
---|
224 | } HBIN_SUB_HDR;
|
---|
225 |
|
---|
226 | #define REG_HBIN_ID 0x6E696268
|
---|
227 |
|
---|
228 | typedef struct hbin_struct {
|
---|
229 | DWORD HBIN_ID; /* hbin */
|
---|
230 | DWORD off_from_first;
|
---|
231 | DWORD off_to_next;
|
---|
232 | DWORD uk1;
|
---|
233 | DWORD uk2;
|
---|
234 | DWORD uk3;
|
---|
235 | DWORD uk4;
|
---|
236 | DWORD blk_size;
|
---|
237 | HBIN_SUB_HDR hbin_sub_hdr;
|
---|
238 | } HBIN_HDR;
|
---|
239 |
|
---|
240 | #define REG_NK_ID 0x6B6E
|
---|
241 |
|
---|
242 | typedef struct nk_struct {
|
---|
243 | WORD NK_ID;
|
---|
244 | WORD type;
|
---|
245 | DWORD t1, t2;
|
---|
246 | DWORD uk1;
|
---|
247 | DWORD own_off;
|
---|
248 | DWORD subk_num;
|
---|
249 | DWORD uk2;
|
---|
250 | DWORD lf_off;
|
---|
251 | DWORD uk3;
|
---|
252 | DWORD val_cnt;
|
---|
253 | DWORD val_off;
|
---|
254 | DWORD sk_off;
|
---|
255 | DWORD clsnam_off;
|
---|
256 | DWORD unk4[4];
|
---|
257 | DWORD unk5;
|
---|
258 | WORD nam_len;
|
---|
259 | WORD clsnam_len;
|
---|
260 | char key_nam[1]; /* Actual length determined by nam_len */
|
---|
261 | } NK_HDR;
|
---|
262 |
|
---|
263 | #define REG_SK_ID 0x6B73
|
---|
264 |
|
---|
265 | struct sk_struct {
|
---|
266 | WORD SK_ID;
|
---|
267 | WORD uk1;
|
---|
268 | DWORD prev_off;
|
---|
269 | DWORD next_off;
|
---|
270 | DWORD ref_cnt;
|
---|
271 | DWORD rec_size;
|
---|
272 | char sec_desc[1];
|
---|
273 | };
|
---|
274 |
|
---|
275 | typedef struct ace_struct {
|
---|
276 | unsigned char type;
|
---|
277 | unsigned char flags;
|
---|
278 | unsigned short length;
|
---|
279 | unsigned int perms;
|
---|
280 | sid_t trustee;
|
---|
281 | } REG_ACE;
|
---|
282 |
|
---|
283 | typedef struct acl_struct {
|
---|
284 | WORD rev;
|
---|
285 | WORD size;
|
---|
286 | DWORD num_aces;
|
---|
287 | REG_ACE *aces; /* One or more ACEs */
|
---|
288 | } REG_ACL;
|
---|
289 |
|
---|
290 | typedef struct sec_desc_rec {
|
---|
291 | WORD rev;
|
---|
292 | WORD type;
|
---|
293 | DWORD owner_off;
|
---|
294 | DWORD group_off;
|
---|
295 | DWORD sacl_off;
|
---|
296 | DWORD dacl_off;
|
---|
297 | } REG_SEC_DESC;
|
---|
298 |
|
---|
299 | typedef struct hash_struct {
|
---|
300 | DWORD nk_off;
|
---|
301 | char hash[4];
|
---|
302 | } HASH_REC;
|
---|
303 |
|
---|
304 | #define REG_LF_ID 0x666C
|
---|
305 |
|
---|
306 | typedef struct lf_struct {
|
---|
307 | WORD LF_ID;
|
---|
308 | WORD key_count;
|
---|
309 | struct hash_struct hr[1]; /* Array of hash records, depending on key_count */
|
---|
310 | } LF_HDR;
|
---|
311 |
|
---|
312 | typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */
|
---|
313 |
|
---|
314 | #define REG_VK_ID 0x6B76
|
---|
315 |
|
---|
316 | typedef struct vk_struct {
|
---|
317 | WORD VK_ID;
|
---|
318 | WORD nam_len;
|
---|
319 | DWORD dat_len; /* If top-bit set, offset contains the data */
|
---|
320 | DWORD dat_off;
|
---|
321 | DWORD dat_type;
|
---|
322 | WORD flag; /* =1, has name, else no name (=Default). */
|
---|
323 | WORD unk1;
|
---|
324 | char dat_name[1]; /* Name starts here ... */
|
---|
325 | } VK_HDR;
|
---|
326 |
|
---|
327 | #define REG_TYPE_DELETE -1
|
---|
328 | #define REG_TYPE_NONE 0
|
---|
329 | #define REG_TYPE_REGSZ 1
|
---|
330 | #define REG_TYPE_EXPANDSZ 2
|
---|
331 | #define REG_TYPE_BIN 3
|
---|
332 | #define REG_TYPE_DWORD 4
|
---|
333 | #define REG_TYPE_MULTISZ 7
|
---|
334 | /* Not a real type in the registry */
|
---|
335 | #define REG_TYPE_KEY 255
|
---|
336 |
|
---|
337 | typedef struct _val_str {
|
---|
338 | unsigned int val;
|
---|
339 | const char * str;
|
---|
340 | } VAL_STR;
|
---|
341 |
|
---|
342 | /* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */
|
---|
343 | typedef struct sk_map_s {
|
---|
344 | int sk_off;
|
---|
345 | KEY_SEC_DESC *key_sec_desc;
|
---|
346 | } SK_MAP;
|
---|
347 |
|
---|
348 | /*
|
---|
349 | * This structure keeps track of the output format of the registry
|
---|
350 | */
|
---|
351 | #define REG_OUTBLK_HDR 1
|
---|
352 | #define REG_OUTBLK_HBIN 2
|
---|
353 |
|
---|
354 | typedef struct hbin_blk_s {
|
---|
355 | int type, size;
|
---|
356 | struct hbin_blk_s *next;
|
---|
357 | char *data; /* The data block */
|
---|
358 | unsigned int file_offset; /* Offset in file */
|
---|
359 | unsigned int free_space; /* Amount of free space in block */
|
---|
360 | unsigned int fsp_off; /* Start of free space in block */
|
---|
361 | int complete, stored;
|
---|
362 | } HBIN_BLK;
|
---|
363 |
|
---|
364 | /*
|
---|
365 | * This structure keeps all the registry stuff in one place
|
---|
366 | */
|
---|
367 | typedef struct regf_struct_s {
|
---|
368 | int reg_type;
|
---|
369 | char *regfile_name, *outfile_name;
|
---|
370 | int fd;
|
---|
371 | struct stat sbuf;
|
---|
372 | char *base;
|
---|
373 | int modified;
|
---|
374 | NTTIME last_mod_time;
|
---|
375 | REG_KEY *root; /* Root of the tree for this file */
|
---|
376 | int sk_count, sk_map_size;
|
---|
377 | SK_MAP *sk_map;
|
---|
378 | const char *owner_sid_str;
|
---|
379 | SEC_DESC *def_sec_desc;
|
---|
380 | /*
|
---|
381 | * These next pointers point to the blocks used to contain the
|
---|
382 | * keys when we are preparing to write them to a file
|
---|
383 | */
|
---|
384 | HBIN_BLK *blk_head, *blk_tail, *free_space;
|
---|
385 | } REGF;
|
---|
386 |
|
---|
387 |
|
---|
388 | /* Function prototypes */
|
---|
389 |
|
---|
390 | static int nt_val_list_iterator(REGF *regf, REG_KEY *key_tree, int bf,
|
---|
391 | char *path, int terminal);
|
---|
392 | static int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf,
|
---|
393 | const char *path);
|
---|
394 | static REG_KEY *nt_find_key_by_name(REG_KEY *tree, char *key);
|
---|
395 | static int print_key(const char *path, char *name, char *class_name, int root,
|
---|
396 | int terminal, int vals, char* newline);
|
---|
397 | static int print_val(const char *path, char *val_name, int val_type,
|
---|
398 | int data_len, void *data_blk, int terminal, int first,
|
---|
399 | int last);
|
---|
400 |
|
---|
401 | static int print_sec(SEC_DESC *sec_desc);
|
---|
402 |
|
---|
403 |
|
---|
404 | /* Globals */
|
---|
405 |
|
---|
406 | char* prefix_filter = "";
|
---|
407 | int type_filter = 0;
|
---|
408 | bool type_filter_enabled = false;
|
---|
409 |
|
---|
410 |
|
---|
411 | unsigned int str_is_prefix(const char* p, const char* s)
|
---|
412 | {
|
---|
413 | const char* cp;
|
---|
414 | const char* cs;
|
---|
415 |
|
---|
416 | cs = s;
|
---|
417 | for(cp=p; (*cp) != '\0'; cp++)
|
---|
418 | {
|
---|
419 | if((*cp)!=(*cs))
|
---|
420 | return 0;
|
---|
421 | cs++;
|
---|
422 | }
|
---|
423 |
|
---|
424 | return 1;
|
---|
425 | }
|
---|
426 |
|
---|
427 |
|
---|
428 | /* Returns a newly malloc()ed string which contains original buffer,
|
---|
429 | * except for non-printable or special characters are quoted in hex
|
---|
430 | * with the syntax '\xQQ' where QQ is the hex ascii value of the quoted
|
---|
431 | * character. A null terminator is added, as only ascii, not binary,
|
---|
432 | * is returned.
|
---|
433 | */
|
---|
434 | static
|
---|
435 | char* quote_buffer(const unsigned char* str, char* special, unsigned int len)
|
---|
436 | {
|
---|
437 | unsigned int i;
|
---|
438 | unsigned int num_written=0;
|
---|
439 | unsigned int out_len = sizeof(char)*len+1;
|
---|
440 | char* ret_val = malloc(out_len);
|
---|
441 |
|
---|
442 | if(ret_val == NULL)
|
---|
443 | return NULL;
|
---|
444 |
|
---|
445 | for(i=0; i<len; i++)
|
---|
446 | {
|
---|
447 | if(str[i] < 32 || str[i] > 126 || strchr(special, str[i]) != NULL)
|
---|
448 | {
|
---|
449 | out_len += 3;
|
---|
450 | /* XXX: may not be the most efficient way of getting enough memory. */
|
---|
451 | ret_val = realloc(ret_val, out_len);
|
---|
452 | if(ret_val == NULL)
|
---|
453 | break;
|
---|
454 | num_written += snprintf(ret_val+num_written, (out_len)-num_written,
|
---|
455 | "\\x%.2X", str[i]);
|
---|
456 | }
|
---|
457 | else
|
---|
458 | ret_val[num_written++] = str[i];
|
---|
459 | }
|
---|
460 | ret_val[num_written] = '\0';
|
---|
461 |
|
---|
462 | return ret_val;
|
---|
463 | }
|
---|
464 |
|
---|
465 |
|
---|
466 | /* Returns a newly malloc()ed string which contains original string,
|
---|
467 | * except for non-printable or special characters are quoted in hex
|
---|
468 | * with the syntax '\xQQ' where QQ is the hex ascii value of the quoted
|
---|
469 | * character.
|
---|
470 | */
|
---|
471 | static
|
---|
472 | char* quote_string(const char* str, char* special)
|
---|
473 | {
|
---|
474 | unsigned int len = strlen(str);
|
---|
475 | char* ret_val = quote_buffer((const unsigned char*)str, special, len);
|
---|
476 |
|
---|
477 | return ret_val;
|
---|
478 | }
|
---|
479 |
|
---|
480 |
|
---|
481 |
|
---|
482 | /*
|
---|
483 | * Iterate over the keys, depth first, calling a function for each key
|
---|
484 | * and indicating if it is terminal or non-terminal and if it has values.
|
---|
485 | *
|
---|
486 | * In addition, for each value in the list, call a value list function
|
---|
487 | */
|
---|
488 |
|
---|
489 | static
|
---|
490 | int nt_val_list_iterator(REGF *regf, REG_KEY *key_tree, int bf, char *path,
|
---|
491 | int terminal)
|
---|
492 | {
|
---|
493 | int i;
|
---|
494 | VAL_LIST* val_list = key_tree->values;
|
---|
495 |
|
---|
496 | for (i=0; i<val_list->val_count; i++)
|
---|
497 | {
|
---|
498 | /*XXX: print_key() is doing nothing right now, can probably be removed. */
|
---|
499 | if (!print_key(path, key_tree->name,
|
---|
500 | key_tree->class_name,
|
---|
501 | (key_tree->type == REG_ROOT_KEY),
|
---|
502 | (key_tree->sub_keys == NULL),
|
---|
503 | (key_tree->values?(key_tree->values->val_count):0),
|
---|
504 | "\n") ||
|
---|
505 | !print_val(path, val_list->vals[i]->name,val_list->vals[i]->data_type,
|
---|
506 | val_list->vals[i]->data_len, val_list->vals[i]->data_blk,
|
---|
507 | terminal,
|
---|
508 | (i == 0),
|
---|
509 | (i == val_list->val_count)))
|
---|
510 | { return 0; }
|
---|
511 | }
|
---|
512 |
|
---|
513 | return 1;
|
---|
514 | }
|
---|
515 |
|
---|
516 | static
|
---|
517 | int nt_key_list_iterator(REGF *regf, KEY_LIST *key_list, int bf,
|
---|
518 | const char *path)
|
---|
519 | {
|
---|
520 | int i;
|
---|
521 |
|
---|
522 | if (!key_list)
|
---|
523 | return 1;
|
---|
524 |
|
---|
525 | for (i=0; i < key_list->key_count; i++)
|
---|
526 | {
|
---|
527 | if (!nt_key_iterator(regf, key_list->keys[i], bf, path))
|
---|
528 | return 0;
|
---|
529 | }
|
---|
530 | return 1;
|
---|
531 | }
|
---|
532 |
|
---|
533 | static
|
---|
534 | int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf,
|
---|
535 | const char *path)
|
---|
536 | {
|
---|
537 | int path_len = strlen(path);
|
---|
538 | char *new_path;
|
---|
539 |
|
---|
540 | if (!regf || !key_tree)
|
---|
541 | return -1;
|
---|
542 |
|
---|
543 | new_path = (char *)malloc(path_len + 1 + strlen(key_tree->name) + 1);
|
---|
544 | if (!new_path)
|
---|
545 | return 0; /* Errors? */
|
---|
546 | new_path[0] = '\0';
|
---|
547 | strcat(new_path, path);
|
---|
548 | strcat(new_path, key_tree->name);
|
---|
549 | strcat(new_path, "/");
|
---|
550 |
|
---|
551 | /* List the key first, then the values, then the sub-keys */
|
---|
552 | /*printf("prefix_filter: %s, path: %s\n", prefix_filter, path);*/
|
---|
553 | if (str_is_prefix(prefix_filter, new_path))
|
---|
554 | {
|
---|
555 | if (!type_filter_enabled || (type_filter == REG_TYPE_KEY))
|
---|
556 | printf("%s%s:KEY\n", path, key_tree->name);
|
---|
557 |
|
---|
558 | /*XXX: print_key() is doing nothing right now, can probably be removed. */
|
---|
559 | if (!print_key(path, key_tree->name,
|
---|
560 | key_tree->class_name,
|
---|
561 | (key_tree->type == REG_ROOT_KEY),
|
---|
562 | (key_tree->sub_keys == NULL),
|
---|
563 | (key_tree->values?(key_tree->values->val_count):0),
|
---|
564 | "\n"))
|
---|
565 | { return 0; }
|
---|
566 |
|
---|
567 | /*
|
---|
568 | * If we have a security print routine, call it
|
---|
569 | * If the security print routine returns false, stop.
|
---|
570 | */
|
---|
571 | if (key_tree->security && !print_sec(key_tree->security->sec_desc))
|
---|
572 | return 0;
|
---|
573 | }
|
---|
574 |
|
---|
575 | /*
|
---|
576 | * Now, iterate through the values in the val_list
|
---|
577 | */
|
---|
578 | if (key_tree->values &&
|
---|
579 | !nt_val_list_iterator(regf, key_tree, bf, new_path,
|
---|
580 | (key_tree->values!=NULL)))
|
---|
581 | {
|
---|
582 | free(new_path);
|
---|
583 | return 0;
|
---|
584 | }
|
---|
585 |
|
---|
586 | /*
|
---|
587 | * Now, iterate through the keys in the key list
|
---|
588 | */
|
---|
589 | if (key_tree->sub_keys &&
|
---|
590 | !nt_key_list_iterator(regf, key_tree->sub_keys, bf,
|
---|
591 | new_path))
|
---|
592 | {
|
---|
593 | free(new_path);
|
---|
594 | return 0;
|
---|
595 | }
|
---|
596 |
|
---|
597 | free(new_path);
|
---|
598 | return 1;
|
---|
599 | }
|
---|
600 |
|
---|
601 |
|
---|
602 | /*
|
---|
603 | * Find key by name in a list ...
|
---|
604 | * Take the first component and search for that in the list
|
---|
605 | */
|
---|
606 | static
|
---|
607 | REG_KEY *nt_find_key_in_list_by_name(KEY_LIST *list, char *key)
|
---|
608 | {
|
---|
609 | int i;
|
---|
610 | REG_KEY *res = NULL;
|
---|
611 |
|
---|
612 | if (!list || !key || !*key) return NULL;
|
---|
613 |
|
---|
614 | for (i = 0; i < list->key_count; i++)
|
---|
615 | if ((res = nt_find_key_by_name(list->keys[i], key)))
|
---|
616 | return res;
|
---|
617 |
|
---|
618 | return NULL;
|
---|
619 | }
|
---|
620 |
|
---|
621 |
|
---|
622 | /*
|
---|
623 | * Find key by name in a tree ... We will assume absolute names here, but we
|
---|
624 | * need the root of the tree ...
|
---|
625 | */
|
---|
626 | static REG_KEY* nt_find_key_by_name(REG_KEY* tree, char* key)
|
---|
627 | {
|
---|
628 | char* lname = NULL;
|
---|
629 | char* c1;
|
---|
630 | char* c2;
|
---|
631 | REG_KEY* tmp;
|
---|
632 |
|
---|
633 | if (!tree || !key || !*key)
|
---|
634 | return NULL;
|
---|
635 |
|
---|
636 | lname = strdup(key);
|
---|
637 | if (!lname)
|
---|
638 | return NULL;
|
---|
639 |
|
---|
640 | /*
|
---|
641 | * Make sure that the first component is correct ...
|
---|
642 | */
|
---|
643 | c1 = lname;
|
---|
644 | c2 = strchr(c1, '/');
|
---|
645 | if (c2)
|
---|
646 | { /* Split here ... */
|
---|
647 | *c2 = 0;
|
---|
648 | c2++;
|
---|
649 | }
|
---|
650 |
|
---|
651 | if (strcmp(c1, tree->name) != 0)
|
---|
652 | {
|
---|
653 | if (lname)
|
---|
654 | free(lname);
|
---|
655 | return NULL;
|
---|
656 | }
|
---|
657 |
|
---|
658 | if (c2)
|
---|
659 | {
|
---|
660 | tmp = nt_find_key_in_list_by_name(tree->sub_keys, c2);
|
---|
661 | free(lname);
|
---|
662 | return tmp;
|
---|
663 | }
|
---|
664 | else
|
---|
665 | {
|
---|
666 | if (lname)
|
---|
667 | free(lname);
|
---|
668 | return tree;
|
---|
669 | }
|
---|
670 |
|
---|
671 | return NULL;
|
---|
672 | }
|
---|
673 |
|
---|
674 | /* Make, delete keys */
|
---|
675 | static
|
---|
676 | int nt_delete_val_key(VAL_KEY *val_key)
|
---|
677 | {
|
---|
678 |
|
---|
679 | if (val_key) {
|
---|
680 | if (val_key->name) free(val_key->name);
|
---|
681 | if (val_key->data_blk) free(val_key->data_blk);
|
---|
682 | free(val_key);
|
---|
683 | };
|
---|
684 | return 1;
|
---|
685 | }
|
---|
686 |
|
---|
687 |
|
---|
688 | /*
|
---|
689 | * Add a key to the tree ... We walk down the components matching until
|
---|
690 | * we don't find any. There must be a match on the first component ...
|
---|
691 | * We return the key structure for the final component as that is
|
---|
692 | * often where we want to add values ...
|
---|
693 | */
|
---|
694 |
|
---|
695 | /*
|
---|
696 | * Convert a string of the form S-1-5-x[-y-z-r] to a SID
|
---|
697 | */
|
---|
698 | /* MIGHT COME IN HANDY LATER.
|
---|
699 | static
|
---|
700 | int sid_string_to_sid(sid_t **sid, const char *sid_str)
|
---|
701 | {
|
---|
702 | int i = 0;
|
---|
703 | unsigned int auth;
|
---|
704 | const char *lstr;
|
---|
705 |
|
---|
706 | *sid = (sid_t *)malloc(sizeof(sid_t));
|
---|
707 | if (!*sid) return 0;
|
---|
708 |
|
---|
709 | memset(*sid, 0, sizeof(sid_t));
|
---|
710 |
|
---|
711 | if (strncmp(sid_str, "S-1-5", 5)) {
|
---|
712 | fprintf(stderr, "Does not conform to S-1-5...: %s\n", sid_str);
|
---|
713 | return 0;
|
---|
714 | }
|
---|
715 |
|
---|
716 | //We only allow strings of form S-1-5...
|
---|
717 |
|
---|
718 | (*sid)->ver = 1;
|
---|
719 | (*sid)->auth[5] = 5;
|
---|
720 |
|
---|
721 | lstr = sid_str + 5;
|
---|
722 |
|
---|
723 | while (1)
|
---|
724 | {
|
---|
725 | if (!lstr || !lstr[0] || sscanf(lstr, "-%u", &auth) == 0)
|
---|
726 | {
|
---|
727 | if (i < 1)
|
---|
728 | {
|
---|
729 | fprintf(stderr, "Not of form -d-d...: %s, %u\n", lstr, i);
|
---|
730 | return 0;
|
---|
731 | }
|
---|
732 | (*sid)->auths=i;
|
---|
733 | return 1;
|
---|
734 | }
|
---|
735 |
|
---|
736 | (*sid)->sub_auths[i] = auth;
|
---|
737 | i++;
|
---|
738 | lstr = strchr(lstr + 1, '-');
|
---|
739 | }
|
---|
740 |
|
---|
741 | return 1;
|
---|
742 | }
|
---|
743 | */
|
---|
744 |
|
---|
745 |
|
---|
746 | /*
|
---|
747 | * We will implement inheritence that is based on what the parent's SEC_DESC
|
---|
748 | * says, but the Owner and Group SIDs can be overwridden from the command line
|
---|
749 | * and additional ACEs can be applied from the command line etc.
|
---|
750 | */
|
---|
751 | static
|
---|
752 | KEY_SEC_DESC *nt_inherit_security(REG_KEY *key)
|
---|
753 | {
|
---|
754 |
|
---|
755 | if (!key) return NULL;
|
---|
756 | return key->security;
|
---|
757 | }
|
---|
758 |
|
---|
759 | /*
|
---|
760 | * Add a sub-key
|
---|
761 | */
|
---|
762 | static
|
---|
763 | REG_KEY *nt_add_reg_key_list(REGF *regf, REG_KEY *key, char * name, int create)
|
---|
764 | {
|
---|
765 | int i;
|
---|
766 | REG_KEY *ret = NULL, *tmp = NULL;
|
---|
767 | KEY_LIST *list;
|
---|
768 | char *lname, *c1, *c2;
|
---|
769 |
|
---|
770 | if (!key || !name || !*name) return NULL;
|
---|
771 |
|
---|
772 | list = key->sub_keys;
|
---|
773 | if (!list) { /* Create an empty list */
|
---|
774 |
|
---|
775 | list = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (REG_KEY_LIST_SIZE - 1) * sizeof(REG_KEY *));
|
---|
776 | list->key_count = 0;
|
---|
777 | list->max_keys = REG_KEY_LIST_SIZE;
|
---|
778 |
|
---|
779 | }
|
---|
780 |
|
---|
781 | lname = strdup(name);
|
---|
782 | if (!lname) return NULL;
|
---|
783 |
|
---|
784 | c1 = lname;
|
---|
785 | c2 = strchr(c1, '/');
|
---|
786 | if (c2) { /* Split here ... */
|
---|
787 | *c2 = 0;
|
---|
788 | c2++;
|
---|
789 | }
|
---|
790 |
|
---|
791 | for (i = 0; i < list->key_count; i++) {
|
---|
792 | if (strcmp(list->keys[i]->name, c1) == 0) {
|
---|
793 | ret = nt_add_reg_key_list(regf, list->keys[i], c2, create);
|
---|
794 | free(lname);
|
---|
795 | return ret;
|
---|
796 | }
|
---|
797 | }
|
---|
798 |
|
---|
799 | /*
|
---|
800 | * If we reach here we could not find the the first component
|
---|
801 | * so create it ...
|
---|
802 | */
|
---|
803 |
|
---|
804 | if (list->key_count < list->max_keys){
|
---|
805 | list->key_count++;
|
---|
806 | }
|
---|
807 | else { /* Create more space in the list ... */
|
---|
808 | if (!(list = (KEY_LIST *)realloc(list, sizeof(KEY_LIST) +
|
---|
809 | (list->max_keys + REG_KEY_LIST_SIZE - 1)
|
---|
810 | * sizeof(REG_KEY *))))
|
---|
811 | goto error;
|
---|
812 |
|
---|
813 | list->max_keys += REG_KEY_LIST_SIZE;
|
---|
814 | list->key_count++;
|
---|
815 | }
|
---|
816 |
|
---|
817 | /*
|
---|
818 | * add the new key at the new slot
|
---|
819 | * XXX: Sort the list someday
|
---|
820 | */
|
---|
821 |
|
---|
822 | /*
|
---|
823 | * We want to create the key, and then do the rest
|
---|
824 | */
|
---|
825 |
|
---|
826 | tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
|
---|
827 |
|
---|
828 | memset(tmp, 0, sizeof(REG_KEY));
|
---|
829 |
|
---|
830 | tmp->name = strdup(c1);
|
---|
831 | if (!tmp->name) goto error;
|
---|
832 | tmp->owner = key;
|
---|
833 | tmp->type = REG_SUB_KEY;
|
---|
834 | /*
|
---|
835 | * Next, pull security from the parent, but override with
|
---|
836 | * anything passed in on the command line
|
---|
837 | */
|
---|
838 | tmp->security = nt_inherit_security(key);
|
---|
839 |
|
---|
840 | list->keys[list->key_count - 1] = tmp;
|
---|
841 |
|
---|
842 | if (c2) {
|
---|
843 | ret = nt_add_reg_key_list(regf, key, c2, True);
|
---|
844 | }
|
---|
845 |
|
---|
846 | if (lname) free(lname);
|
---|
847 |
|
---|
848 | return ret;
|
---|
849 |
|
---|
850 | error:
|
---|
851 | if (tmp) free(tmp);
|
---|
852 | if (lname) free(lname);
|
---|
853 | return NULL;
|
---|
854 | }
|
---|
855 |
|
---|
856 |
|
---|
857 | /*
|
---|
858 | * Load and unload a registry file.
|
---|
859 | *
|
---|
860 | * Load, loads it into memory as a tree, while unload sealizes/flattens it
|
---|
861 | */
|
---|
862 |
|
---|
863 | /*
|
---|
864 | * Get the starting record for NT Registry file
|
---|
865 | */
|
---|
866 |
|
---|
867 | /*
|
---|
868 | * Where we keep all the regf stuff for one registry.
|
---|
869 | * This is the structure that we use to tie the in memory tree etc
|
---|
870 | * together. By keeping separate structs, we can operate on different
|
---|
871 | * registries at the same time.
|
---|
872 | * Currently, the SK_MAP is an array of mapping structure.
|
---|
873 | * Since we only need this on input and output, we fill in the structure
|
---|
874 | * as we go on input. On output, we know how many SK items we have, so
|
---|
875 | * we can allocate the structure as we need to.
|
---|
876 | * If you add stuff here that is dynamically allocated, add the
|
---|
877 | * appropriate free statements below.
|
---|
878 | */
|
---|
879 |
|
---|
880 | #define REGF_REGTYPE_NONE 0
|
---|
881 | #define REGF_REGTYPE_NT 1
|
---|
882 | #define REGF_REGTYPE_W9X 2
|
---|
883 |
|
---|
884 | #define TTTONTTIME(r, t1, t2) (r)->last_mod_time.low = (t1); \
|
---|
885 | (r)->last_mod_time.high = (t2);
|
---|
886 |
|
---|
887 | #define REGF_HDR_BLKSIZ 0x1000
|
---|
888 |
|
---|
889 | #define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4)
|
---|
890 | #define LOCN(base, f) ((base) + OFF(f))
|
---|
891 |
|
---|
892 | const VAL_STR reg_type_names[] = {
|
---|
893 | { REG_TYPE_REGSZ, "SZ" },
|
---|
894 | { REG_TYPE_EXPANDSZ, "EXPAND_SZ" },
|
---|
895 | { REG_TYPE_BIN, "BIN" },
|
---|
896 | { REG_TYPE_DWORD, "DWORD" },
|
---|
897 | { REG_TYPE_MULTISZ, "MULTI_SZ" },
|
---|
898 | { REG_TYPE_KEY, "KEY" },
|
---|
899 | { 0, NULL },
|
---|
900 | };
|
---|
901 |
|
---|
902 |
|
---|
903 | static
|
---|
904 | const char *val_to_str(unsigned int val, const VAL_STR *val_array)
|
---|
905 | {
|
---|
906 | int i;
|
---|
907 |
|
---|
908 | if (!val_array)
|
---|
909 | return NULL;
|
---|
910 |
|
---|
911 | for(i=0; val_array[i].val && val_array[i].str; i++)
|
---|
912 | if (val_array[i].val == val)
|
---|
913 | return val_array[i].str;
|
---|
914 |
|
---|
915 | return NULL;
|
---|
916 | }
|
---|
917 |
|
---|
918 |
|
---|
919 | /* Returns 0 on error */
|
---|
920 | static
|
---|
921 | int str_to_val(const char* str, const VAL_STR *val_array)
|
---|
922 | {
|
---|
923 | int i;
|
---|
924 |
|
---|
925 | if (!val_array)
|
---|
926 | return 0;
|
---|
927 |
|
---|
928 | for(i=0; val_array[i].val && val_array[i].str; i++)
|
---|
929 | if (strcmp(val_array[i].str, str) == 0)
|
---|
930 | return val_array[i].val;
|
---|
931 |
|
---|
932 | return 0;
|
---|
933 | }
|
---|
934 |
|
---|
935 |
|
---|
936 | /*
|
---|
937 | * Convert from UniCode to Ascii ... Does not take into account other lang
|
---|
938 | * Restrict by ascii_max if > 0
|
---|
939 | */
|
---|
940 | static
|
---|
941 | int uni_to_ascii(unsigned char *uni, unsigned char *ascii, int ascii_max,
|
---|
942 | int uni_max)
|
---|
943 | {
|
---|
944 | int i = 0;
|
---|
945 |
|
---|
946 | while (i < ascii_max && (uni[i*2] || uni[i*2+1]))
|
---|
947 | {
|
---|
948 | if (uni_max > 0 && (i*2) >= uni_max) break;
|
---|
949 | ascii[i] = uni[i*2];
|
---|
950 | i++;
|
---|
951 | }
|
---|
952 | ascii[i] = '\0';
|
---|
953 |
|
---|
954 | return i;
|
---|
955 | }
|
---|
956 |
|
---|
957 | /*
|
---|
958 | * Convert a data value to a string for display
|
---|
959 | */
|
---|
960 | static
|
---|
961 | unsigned char* data_to_ascii(unsigned char *datap, int len, int type)
|
---|
962 | {
|
---|
963 | unsigned char *asciip;
|
---|
964 | unsigned int i;
|
---|
965 | unsigned short num_nulls;
|
---|
966 | unsigned char* ascii;
|
---|
967 | unsigned char* cur_str;
|
---|
968 | unsigned char* cur_ascii;
|
---|
969 | char* cur_quoted;
|
---|
970 | unsigned int cur_str_len;
|
---|
971 | unsigned int ascii_max, cur_str_max;
|
---|
972 | unsigned int str_rem, cur_str_rem, alen;
|
---|
973 |
|
---|
974 | switch (type)
|
---|
975 | {
|
---|
976 | case REG_TYPE_REGSZ:
|
---|
977 | if (verbose)
|
---|
978 | fprintf(stderr, "Len: %d\n", len);
|
---|
979 |
|
---|
980 | ascii_max = sizeof(char)*len;
|
---|
981 | ascii = malloc(ascii_max+4);
|
---|
982 | if(ascii == NULL)
|
---|
983 | return NULL;
|
---|
984 |
|
---|
985 | /* XXX: This has to be fixed. It has to be UNICODE */
|
---|
986 | uni_to_ascii(datap, ascii, len, ascii_max);
|
---|
987 | return ascii;
|
---|
988 | break;
|
---|
989 |
|
---|
990 | case REG_TYPE_EXPANDSZ:
|
---|
991 | ascii_max = sizeof(char)*len;
|
---|
992 | ascii = malloc(ascii_max+2);
|
---|
993 | if(ascii == NULL)
|
---|
994 | return NULL;
|
---|
995 |
|
---|
996 | uni_to_ascii(datap, ascii, len, ascii_max);
|
---|
997 | return ascii;
|
---|
998 | break;
|
---|
999 |
|
---|
1000 | case REG_TYPE_BIN:
|
---|
1001 | ascii = (unsigned char*)quote_buffer(datap, "\\", len);
|
---|
1002 | return ascii;
|
---|
1003 | break;
|
---|
1004 |
|
---|
1005 | case REG_TYPE_DWORD:
|
---|
1006 | ascii_max = sizeof(char)*10;
|
---|
1007 | ascii = malloc(ascii_max+1);
|
---|
1008 | if(ascii == NULL)
|
---|
1009 | return NULL;
|
---|
1010 |
|
---|
1011 | if (*(int *)datap == 0)
|
---|
1012 | snprintf((char*)ascii, ascii_max, "0");
|
---|
1013 | else
|
---|
1014 | snprintf((char*)ascii, ascii_max, "0x%x", *(int *)datap);
|
---|
1015 | return ascii;
|
---|
1016 | break;
|
---|
1017 |
|
---|
1018 | case REG_TYPE_MULTISZ:
|
---|
1019 | ascii_max = sizeof(char)*len*4;
|
---|
1020 | cur_str_max = sizeof(char)*len+1;
|
---|
1021 | cur_str = malloc(cur_str_max);
|
---|
1022 | cur_ascii = malloc(cur_str_max);
|
---|
1023 | ascii = malloc(ascii_max+4);
|
---|
1024 | if(ascii == NULL)
|
---|
1025 | return NULL;
|
---|
1026 |
|
---|
1027 | /* Reads until it reaches 4 consecutive NULLs,
|
---|
1028 | * which is two nulls in unicode, or until it reaches len, or until we
|
---|
1029 | * run out of buffer. The latter should never happen, but we shouldn't
|
---|
1030 | * trust our file to have the right lengths/delimiters.
|
---|
1031 | */
|
---|
1032 | asciip = ascii;
|
---|
1033 | num_nulls = 0;
|
---|
1034 | str_rem = ascii_max;
|
---|
1035 | cur_str_rem = cur_str_max;
|
---|
1036 | cur_str_len = 0;
|
---|
1037 |
|
---|
1038 | for(i=0; (i < len) && str_rem > 0; i++)
|
---|
1039 | {
|
---|
1040 | *(cur_str+cur_str_len) = *(datap+i);
|
---|
1041 | if(*(cur_str+cur_str_len) == 0)
|
---|
1042 | num_nulls++;
|
---|
1043 | else
|
---|
1044 | num_nulls = 0;
|
---|
1045 | cur_str_len++;
|
---|
1046 |
|
---|
1047 | if(num_nulls == 2)
|
---|
1048 | {
|
---|
1049 | uni_to_ascii(cur_str, cur_ascii, cur_str_max, 0);
|
---|
1050 | /* XXX: Should backslashes be quoted as well? */
|
---|
1051 | cur_quoted = quote_string((char*)cur_ascii, "|");
|
---|
1052 | alen = snprintf((char*)asciip, str_rem, "%s", cur_quoted);
|
---|
1053 | asciip += alen;
|
---|
1054 | str_rem -= alen;
|
---|
1055 | free(cur_quoted);
|
---|
1056 |
|
---|
1057 | if(*(datap+i+1) == 0 && *(datap+i+2) == 0)
|
---|
1058 | break;
|
---|
1059 | else
|
---|
1060 | {
|
---|
1061 | alen = snprintf((char*)asciip, str_rem, "%c", '|');
|
---|
1062 | asciip += alen;
|
---|
1063 | str_rem -= alen;
|
---|
1064 | memset(cur_str, 0, cur_str_max);
|
---|
1065 | cur_str_len = 0;
|
---|
1066 | num_nulls = 0;
|
---|
1067 | /* To eliminate leading nulls in subsequent strings. */
|
---|
1068 | i++;
|
---|
1069 | }
|
---|
1070 | }
|
---|
1071 | }
|
---|
1072 | *asciip = 0;
|
---|
1073 | return ascii;
|
---|
1074 | break;
|
---|
1075 |
|
---|
1076 | default:
|
---|
1077 | return NULL;
|
---|
1078 | break;
|
---|
1079 | }
|
---|
1080 |
|
---|
1081 | return NULL;
|
---|
1082 | }
|
---|
1083 |
|
---|
1084 | static
|
---|
1085 | REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size, REG_KEY *parent);
|
---|
1086 |
|
---|
1087 | static
|
---|
1088 | int nt_set_regf_input_file(REGF *regf, char *filename)
|
---|
1089 | {
|
---|
1090 | return ((regf->regfile_name = strdup(filename)) != NULL);
|
---|
1091 | }
|
---|
1092 |
|
---|
1093 |
|
---|
1094 | /* Create a regf structure and init it */
|
---|
1095 |
|
---|
1096 | static
|
---|
1097 | REGF *nt_create_regf(void)
|
---|
1098 | {
|
---|
1099 | REGF *tmp = (REGF *)malloc(sizeof(REGF));
|
---|
1100 | if (!tmp) return tmp;
|
---|
1101 | memset(tmp, 0, sizeof(REGF));
|
---|
1102 | tmp->owner_sid_str = def_owner_sid_str;
|
---|
1103 | return tmp;
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 |
|
---|
1107 | /* Get the header of the registry. Return a pointer to the structure
|
---|
1108 | * If the mmap'd area has not been allocated, then mmap the input file
|
---|
1109 | */
|
---|
1110 | static
|
---|
1111 | REGF_HDR *nt_get_regf_hdr(REGF *regf)
|
---|
1112 | {
|
---|
1113 | if (!regf)
|
---|
1114 | return NULL; /* What about errors */
|
---|
1115 |
|
---|
1116 | if (!regf->regfile_name)
|
---|
1117 | return NULL; /* What about errors */
|
---|
1118 |
|
---|
1119 | if (!regf->base) { /* Try to mmap etc the file */
|
---|
1120 |
|
---|
1121 | if ((regf->fd = open(regf->regfile_name, O_RDONLY, 0000)) <0) {
|
---|
1122 | return NULL; /* What about errors? */
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 | if (fstat(regf->fd, ®f->sbuf) < 0) {
|
---|
1126 | return NULL;
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 | regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0);
|
---|
1130 |
|
---|
1131 | if ((int)regf->base == 1) {
|
---|
1132 | fprintf(stderr, "Could not mmap file: %s, %s\n", regf->regfile_name,
|
---|
1133 | strerror(errno));
|
---|
1134 | return NULL;
|
---|
1135 | }
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | /*
|
---|
1139 | * At this point, regf->base != NULL, and we should be able to read the
|
---|
1140 | * header
|
---|
1141 | */
|
---|
1142 |
|
---|
1143 | assert(regf->base != NULL);
|
---|
1144 |
|
---|
1145 | return (REGF_HDR *)regf->base;
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | /*
|
---|
1149 | * Validate a regf header
|
---|
1150 | * For now, do nothing, but we should check the checksum
|
---|
1151 | */
|
---|
1152 | static
|
---|
1153 | int valid_regf_hdr(REGF_HDR *regf_hdr)
|
---|
1154 | {
|
---|
1155 | if (!regf_hdr) return 0;
|
---|
1156 |
|
---|
1157 | return 1;
|
---|
1158 | }
|
---|
1159 |
|
---|
1160 | /*
|
---|
1161 | * Process an SK header ...
|
---|
1162 | * Every time we see a new one, add it to the map. Otherwise, just look it up.
|
---|
1163 | * We will do a simple linear search for the moment, since many KEYs have the
|
---|
1164 | * same security descriptor.
|
---|
1165 | * We allocate the map in increments of 10 entries.
|
---|
1166 | */
|
---|
1167 |
|
---|
1168 | /*
|
---|
1169 | * Create a new entry in the map, and increase the size of the map if needed
|
---|
1170 | */
|
---|
1171 | static
|
---|
1172 | SK_MAP *alloc_sk_map_entry(REGF *regf, KEY_SEC_DESC *tmp, int sk_off)
|
---|
1173 | {
|
---|
1174 | if (!regf->sk_map) { /* Allocate a block of 10 */
|
---|
1175 | regf->sk_map = (SK_MAP *)malloc(sizeof(SK_MAP) * 10);
|
---|
1176 | if (!regf->sk_map) {
|
---|
1177 | free(tmp);
|
---|
1178 | return NULL;
|
---|
1179 | }
|
---|
1180 | regf->sk_map_size = 10;
|
---|
1181 | regf->sk_count = 1;
|
---|
1182 | (regf->sk_map)[0].sk_off = sk_off;
|
---|
1183 | (regf->sk_map)[0].key_sec_desc = tmp;
|
---|
1184 | }
|
---|
1185 | else { /* Simply allocate a new slot, unless we have to expand the list */
|
---|
1186 | int ndx = regf->sk_count;
|
---|
1187 | if (regf->sk_count >= regf->sk_map_size) {
|
---|
1188 | regf->sk_map = (SK_MAP *)realloc(regf->sk_map,
|
---|
1189 | (regf->sk_map_size + 10)*sizeof(SK_MAP));
|
---|
1190 | if (!regf->sk_map) {
|
---|
1191 | free(tmp);
|
---|
1192 | return NULL;
|
---|
1193 | }
|
---|
1194 | /*
|
---|
1195 | * ndx already points at the first entry of the new block
|
---|
1196 | */
|
---|
1197 | regf->sk_map_size += 10;
|
---|
1198 | }
|
---|
1199 | (regf->sk_map)[ndx].sk_off = sk_off;
|
---|
1200 | (regf->sk_map)[ndx].key_sec_desc = tmp;
|
---|
1201 | regf->sk_count++;
|
---|
1202 | }
|
---|
1203 | return regf->sk_map;
|
---|
1204 | }
|
---|
1205 |
|
---|
1206 | /*
|
---|
1207 | * Search for a KEY_SEC_DESC in the sk_map, but don't create one if not
|
---|
1208 | * found
|
---|
1209 | */
|
---|
1210 | static
|
---|
1211 | KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off)
|
---|
1212 | {
|
---|
1213 | int i;
|
---|
1214 |
|
---|
1215 | if (!sk_map) return NULL;
|
---|
1216 |
|
---|
1217 | for (i = 0; i < count; i++) {
|
---|
1218 |
|
---|
1219 | if (sk_map[i].sk_off == sk_off)
|
---|
1220 | return sk_map[i].key_sec_desc;
|
---|
1221 |
|
---|
1222 | }
|
---|
1223 |
|
---|
1224 | return NULL;
|
---|
1225 |
|
---|
1226 | }
|
---|
1227 |
|
---|
1228 | /*
|
---|
1229 | * Allocate a KEY_SEC_DESC if we can't find one in the map
|
---|
1230 | */
|
---|
1231 | static
|
---|
1232 | KEY_SEC_DESC *lookup_create_sec_key(REGF *regf, SK_MAP *sk_map, int sk_off)
|
---|
1233 | {
|
---|
1234 | KEY_SEC_DESC *tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off);
|
---|
1235 |
|
---|
1236 | if (tmp) {
|
---|
1237 | return tmp;
|
---|
1238 | }
|
---|
1239 | else { /* Allocate a new one */
|
---|
1240 | tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
|
---|
1241 | if (!tmp) {
|
---|
1242 | return NULL;
|
---|
1243 | }
|
---|
1244 | memset(tmp, 0, sizeof(KEY_SEC_DESC)); /* Neatly sets offset to 0 */
|
---|
1245 | tmp->state = SEC_DESC_RES;
|
---|
1246 | if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
|
---|
1247 | return NULL;
|
---|
1248 | }
|
---|
1249 | return tmp;
|
---|
1250 | }
|
---|
1251 | }
|
---|
1252 |
|
---|
1253 | /*
|
---|
1254 | * Allocate storage and duplicate a SID
|
---|
1255 | * We could allocate the SID to be only the size needed, but I am too lazy.
|
---|
1256 | */
|
---|
1257 | static
|
---|
1258 | sid_t *dup_sid(sid_t *sid)
|
---|
1259 | {
|
---|
1260 | sid_t *tmp = (sid_t *)malloc(sizeof(sid_t));
|
---|
1261 | int i;
|
---|
1262 |
|
---|
1263 | if (!tmp) return NULL;
|
---|
1264 | tmp->ver = sid->ver;
|
---|
1265 | tmp->auths = sid->auths;
|
---|
1266 | for (i=0; i<6; i++) {
|
---|
1267 | tmp->auth[i] = sid->auth[i];
|
---|
1268 | }
|
---|
1269 | for (i=0; i<tmp->auths&&i<MAXSUBAUTHS; i++) {
|
---|
1270 | tmp->sub_auths[i] = sid->sub_auths[i];
|
---|
1271 | }
|
---|
1272 | return tmp;
|
---|
1273 | }
|
---|
1274 |
|
---|
1275 | /*
|
---|
1276 | * Allocate space for an ACE and duplicate the registry encoded one passed in
|
---|
1277 | */
|
---|
1278 | static
|
---|
1279 | ACE *dup_ace(REG_ACE *ace)
|
---|
1280 | {
|
---|
1281 | ACE *tmp = NULL;
|
---|
1282 |
|
---|
1283 | tmp = (ACE *)malloc(sizeof(ACE));
|
---|
1284 |
|
---|
1285 | if (!tmp)
|
---|
1286 | return NULL;
|
---|
1287 |
|
---|
1288 | tmp->type = CVAL(&ace->type);
|
---|
1289 | tmp->flags = CVAL(&ace->flags);
|
---|
1290 | tmp->perms = IVAL(&ace->perms);
|
---|
1291 | tmp->trustee = dup_sid(&ace->trustee);
|
---|
1292 | return tmp;
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | /*
|
---|
1296 | * Allocate space for an ACL and duplicate the registry encoded one passed in
|
---|
1297 | */
|
---|
1298 | static
|
---|
1299 | ACL *dup_acl(REG_ACL *acl)
|
---|
1300 | {
|
---|
1301 | ACL *tmp = NULL;
|
---|
1302 | REG_ACE* ace;
|
---|
1303 | int i, num_aces;
|
---|
1304 |
|
---|
1305 | num_aces = IVAL(&acl->num_aces);
|
---|
1306 |
|
---|
1307 | tmp = (ACL *)malloc(sizeof(ACL) + (num_aces - 1)*sizeof(ACE *));
|
---|
1308 | if (!tmp) return NULL;
|
---|
1309 |
|
---|
1310 | tmp->num_aces = num_aces;
|
---|
1311 | tmp->refcnt = 1;
|
---|
1312 | tmp->rev = SVAL(&acl->rev);
|
---|
1313 | if (verbose) fprintf(stdout, "ACL: refcnt: %u, rev: %u\n", tmp->refcnt,
|
---|
1314 | tmp->rev);
|
---|
1315 | ace = (REG_ACE *)&acl->aces;
|
---|
1316 | for (i=0; i<num_aces; i++) {
|
---|
1317 | tmp->aces[i] = dup_ace(ace);
|
---|
1318 | ace = (REG_ACE *)((char *)ace + SVAL(&ace->length));
|
---|
1319 | /* XXX: should handle NULLs returned from dup_ace() */
|
---|
1320 | }
|
---|
1321 |
|
---|
1322 | return tmp;
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 | static
|
---|
1326 | SEC_DESC *process_sec_desc(REGF *regf, REG_SEC_DESC *sec_desc)
|
---|
1327 | {
|
---|
1328 | SEC_DESC *tmp = NULL;
|
---|
1329 |
|
---|
1330 | tmp = (SEC_DESC *)malloc(sizeof(SEC_DESC));
|
---|
1331 |
|
---|
1332 | if (!tmp) {
|
---|
1333 | return NULL;
|
---|
1334 | }
|
---|
1335 |
|
---|
1336 | tmp->rev = SVAL(&sec_desc->rev);
|
---|
1337 | tmp->type = SVAL(&sec_desc->type);
|
---|
1338 | if (verbose) fprintf(stdout, "SEC_DESC Rev: %0X, Type: %0X\n",
|
---|
1339 | tmp->rev, tmp->type);
|
---|
1340 | if (verbose) fprintf(stdout, "SEC_DESC Owner Off: %0X\n",
|
---|
1341 | IVAL(&sec_desc->owner_off));
|
---|
1342 | if (verbose) fprintf(stdout, "SEC_DESC Group Off: %0X\n",
|
---|
1343 | IVAL(&sec_desc->group_off));
|
---|
1344 | if (verbose) fprintf(stdout, "SEC_DESC DACL Off: %0X\n",
|
---|
1345 | IVAL(&sec_desc->dacl_off));
|
---|
1346 | tmp->owner = dup_sid((sid_t *)((char *)sec_desc + IVAL(&sec_desc->owner_off)));
|
---|
1347 | if (!tmp->owner) {
|
---|
1348 | free(tmp);
|
---|
1349 | return NULL;
|
---|
1350 | }
|
---|
1351 | tmp->group = dup_sid((sid_t *)((char *)sec_desc + IVAL(&sec_desc->group_off)));
|
---|
1352 | if (!tmp->group) {
|
---|
1353 | free(tmp);
|
---|
1354 | return NULL;
|
---|
1355 | }
|
---|
1356 |
|
---|
1357 | /* Now pick up the SACL and DACL */
|
---|
1358 |
|
---|
1359 | if (sec_desc->sacl_off)
|
---|
1360 | tmp->sacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->sacl_off)));
|
---|
1361 | else
|
---|
1362 | tmp->sacl = NULL;
|
---|
1363 |
|
---|
1364 | if (sec_desc->dacl_off)
|
---|
1365 | tmp->dacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->dacl_off)));
|
---|
1366 | else
|
---|
1367 | tmp->dacl = NULL;
|
---|
1368 |
|
---|
1369 | return tmp;
|
---|
1370 | }
|
---|
1371 |
|
---|
1372 | static
|
---|
1373 | KEY_SEC_DESC *process_sk(REGF *regf, SK_HDR *sk_hdr, int sk_off, int size)
|
---|
1374 | {
|
---|
1375 | KEY_SEC_DESC *tmp = NULL;
|
---|
1376 | int sk_next_off, sk_prev_off, sk_size;
|
---|
1377 | REG_SEC_DESC *sec_desc;
|
---|
1378 |
|
---|
1379 | if (!sk_hdr) return NULL;
|
---|
1380 |
|
---|
1381 | if (SVAL(&sk_hdr->SK_ID) != REG_SK_ID) {
|
---|
1382 | fprintf(stderr, "Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr,
|
---|
1383 | regf->regfile_name);
|
---|
1384 | return NULL;
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | if (-size < (sk_size = IVAL(&sk_hdr->rec_size))) {
|
---|
1388 | fprintf(stderr, "Incorrect SK record size: %d vs %d. %s\n",
|
---|
1389 | -size, sk_size, regf->regfile_name);
|
---|
1390 | return NULL;
|
---|
1391 | }
|
---|
1392 |
|
---|
1393 | /*
|
---|
1394 | * Now, we need to look up the SK Record in the map, and return it
|
---|
1395 | * Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can
|
---|
1396 | * use that
|
---|
1397 | */
|
---|
1398 |
|
---|
1399 | if (regf->sk_map &&
|
---|
1400 | ((tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off)) != NULL)
|
---|
1401 | && (tmp->state == SEC_DESC_OCU)) {
|
---|
1402 | tmp->ref_cnt++;
|
---|
1403 | return tmp;
|
---|
1404 | }
|
---|
1405 |
|
---|
1406 | /* Here, we have an item in the map that has been reserved, or tmp==NULL. */
|
---|
1407 |
|
---|
1408 | assert(tmp == NULL || (tmp && tmp->state != SEC_DESC_NON));
|
---|
1409 |
|
---|
1410 | /*
|
---|
1411 | * Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the
|
---|
1412 | * new KEY_SEC_DESC to the mapping structure, since the offset supplied is
|
---|
1413 | * the actual offset of structure. The same offset will be used by
|
---|
1414 | * all future references to this structure
|
---|
1415 | * We could put all this unpleasantness in a function.
|
---|
1416 | */
|
---|
1417 |
|
---|
1418 | if (!tmp) {
|
---|
1419 | tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
|
---|
1420 | if (!tmp) return NULL;
|
---|
1421 | memset(tmp, 0, sizeof(KEY_SEC_DESC));
|
---|
1422 |
|
---|
1423 | /*
|
---|
1424 | * Allocate an entry in the SK_MAP ...
|
---|
1425 | * We don't need to free tmp, because that is done for us if the
|
---|
1426 | * sm_map entry can't be expanded when we need more space in the map.
|
---|
1427 | */
|
---|
1428 |
|
---|
1429 | if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
|
---|
1430 | return NULL;
|
---|
1431 | }
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | tmp->ref_cnt++;
|
---|
1435 | tmp->state = SEC_DESC_OCU;
|
---|
1436 |
|
---|
1437 | /*
|
---|
1438 | * Now, process the actual sec desc and plug the values in
|
---|
1439 | */
|
---|
1440 |
|
---|
1441 | sec_desc = (REG_SEC_DESC *)&sk_hdr->sec_desc[0];
|
---|
1442 | tmp->sec_desc = process_sec_desc(regf, sec_desc);
|
---|
1443 |
|
---|
1444 | /*
|
---|
1445 | * Now forward and back links. Here we allocate an entry in the sk_map
|
---|
1446 | * if it does not exist, and mark it reserved
|
---|
1447 | */
|
---|
1448 |
|
---|
1449 | sk_prev_off = IVAL(&sk_hdr->prev_off);
|
---|
1450 | tmp->prev = lookup_create_sec_key(regf, regf->sk_map, sk_prev_off);
|
---|
1451 | assert(tmp->prev != NULL);
|
---|
1452 | sk_next_off = IVAL(&sk_hdr->next_off);
|
---|
1453 | tmp->next = lookup_create_sec_key(regf, regf->sk_map, sk_next_off);
|
---|
1454 | assert(tmp->next != NULL);
|
---|
1455 |
|
---|
1456 | return tmp;
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 | /*
|
---|
1460 | * Process a VK header and return a value
|
---|
1461 | */
|
---|
1462 | static
|
---|
1463 | VAL_KEY *process_vk(REGF *regf, VK_HDR *vk_hdr, int size)
|
---|
1464 | {
|
---|
1465 | char val_name[1024];
|
---|
1466 | int nam_len, dat_len, flag, dat_type, dat_off, vk_id;
|
---|
1467 | const char *val_type;
|
---|
1468 | VAL_KEY *tmp = NULL;
|
---|
1469 |
|
---|
1470 | if (!vk_hdr) return NULL;
|
---|
1471 |
|
---|
1472 | if ((vk_id = SVAL(&vk_hdr->VK_ID)) != REG_VK_ID) {
|
---|
1473 | fprintf(stderr, "Unrecognized VK header ID: %0X, block: %0X, %s\n",
|
---|
1474 | vk_id, (int)vk_hdr, regf->regfile_name);
|
---|
1475 | return NULL;
|
---|
1476 | }
|
---|
1477 |
|
---|
1478 | nam_len = SVAL(&vk_hdr->nam_len);
|
---|
1479 | val_name[nam_len] = '\0';
|
---|
1480 | flag = SVAL(&vk_hdr->flag);
|
---|
1481 | dat_type = IVAL(&vk_hdr->dat_type);
|
---|
1482 | dat_len = IVAL(&vk_hdr->dat_len); /* If top bit, offset contains data */
|
---|
1483 | dat_off = IVAL(&vk_hdr->dat_off);
|
---|
1484 |
|
---|
1485 | tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY));
|
---|
1486 | if (!tmp) {
|
---|
1487 | goto error;
|
---|
1488 | }
|
---|
1489 | memset(tmp, 0, sizeof(VAL_KEY));
|
---|
1490 | tmp->has_name = flag;
|
---|
1491 | tmp->data_type = dat_type;
|
---|
1492 |
|
---|
1493 | if (flag & 0x01) {
|
---|
1494 | strncpy(val_name, vk_hdr->dat_name, nam_len);
|
---|
1495 | tmp->name = strdup(val_name);
|
---|
1496 | if (!tmp->name) {
|
---|
1497 | goto error;
|
---|
1498 | }
|
---|
1499 | }
|
---|
1500 | else
|
---|
1501 | strncpy(val_name, "<No Name>", 10);
|
---|
1502 |
|
---|
1503 | /*
|
---|
1504 | * Allocate space and copy the data as a BLOB
|
---|
1505 | */
|
---|
1506 |
|
---|
1507 | if (dat_len) {
|
---|
1508 |
|
---|
1509 | char *dtmp = (char *)malloc(dat_len&0x7FFFFFFF);
|
---|
1510 |
|
---|
1511 | if (!dtmp) {
|
---|
1512 | goto error;
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | tmp->data_blk = dtmp;
|
---|
1516 |
|
---|
1517 | if ((dat_len&0x80000000) == 0)
|
---|
1518 | { /* The data is pointed to by the offset */
|
---|
1519 | char *dat_ptr = LOCN(regf->base, dat_off);
|
---|
1520 | memcpy(dtmp, dat_ptr, dat_len);
|
---|
1521 | }
|
---|
1522 | else { /* The data is in the offset or type */
|
---|
1523 | /*
|
---|
1524 | * XXX:
|
---|
1525 | * Some registry files seem to have wierd fields. If top bit is set,
|
---|
1526 | * but len is 0, the type seems to be the value ...
|
---|
1527 | * Not sure how to handle this last type for the moment ...
|
---|
1528 | */
|
---|
1529 | dat_len = dat_len & 0x7FFFFFFF;
|
---|
1530 | memcpy(dtmp, &dat_off, dat_len);
|
---|
1531 | }
|
---|
1532 |
|
---|
1533 | tmp->data_len = dat_len;
|
---|
1534 | }
|
---|
1535 |
|
---|
1536 | val_type = val_to_str(dat_type, reg_type_names);
|
---|
1537 |
|
---|
1538 | /*
|
---|
1539 | * We need to save the data area as well
|
---|
1540 | */
|
---|
1541 | if (verbose)
|
---|
1542 | fprintf(stdout, " %s : %s : \n", val_name, val_type);
|
---|
1543 |
|
---|
1544 | return tmp;
|
---|
1545 |
|
---|
1546 | error:
|
---|
1547 | if (tmp) nt_delete_val_key(tmp);
|
---|
1548 | return NULL;
|
---|
1549 |
|
---|
1550 | }
|
---|
1551 |
|
---|
1552 | /*
|
---|
1553 | * Process a VL Header and return a list of values
|
---|
1554 | */
|
---|
1555 | static
|
---|
1556 | VAL_LIST *process_vl(REGF *regf, VL_TYPE vl, int count, int size)
|
---|
1557 | {
|
---|
1558 | int i, vk_off;
|
---|
1559 | VK_HDR *vk_hdr;
|
---|
1560 | VAL_LIST *tmp = NULL;
|
---|
1561 |
|
---|
1562 | if (!vl) return NULL;
|
---|
1563 |
|
---|
1564 | if (-size < (count+1)*sizeof(int)){
|
---|
1565 | fprintf(stderr, "Error in VL header format. Size less than space required. %d\n", -size);
|
---|
1566 | return NULL;
|
---|
1567 | }
|
---|
1568 |
|
---|
1569 | tmp = (VAL_LIST *)malloc(sizeof(VAL_LIST) + (count - 1) * sizeof(VAL_KEY *));
|
---|
1570 | if (!tmp) {
|
---|
1571 | goto error;
|
---|
1572 | }
|
---|
1573 |
|
---|
1574 | for (i=0; i<count; i++) {
|
---|
1575 | vk_off = IVAL(&vl[i]);
|
---|
1576 | vk_hdr = (VK_HDR *)LOCN(regf->base, vk_off);
|
---|
1577 | tmp->vals[i] = process_vk(regf, vk_hdr, BLK_SIZE(vk_hdr));
|
---|
1578 | if (!tmp->vals[i]){
|
---|
1579 | goto error;
|
---|
1580 | }
|
---|
1581 | }
|
---|
1582 |
|
---|
1583 | tmp->val_count = count;
|
---|
1584 | tmp->max_vals = count;
|
---|
1585 |
|
---|
1586 | return tmp;
|
---|
1587 |
|
---|
1588 | error:
|
---|
1589 | /* XXX: free the partially allocated structure */
|
---|
1590 | return NULL;
|
---|
1591 | }
|
---|
1592 |
|
---|
1593 | /*
|
---|
1594 | * Process an LF Header and return a list of sub-keys
|
---|
1595 | */
|
---|
1596 | static
|
---|
1597 | KEY_LIST *process_lf(REGF *regf, LF_HDR *lf_hdr, int size, REG_KEY *parent)
|
---|
1598 | {
|
---|
1599 | int count, i, nk_off;
|
---|
1600 | unsigned int lf_id;
|
---|
1601 | KEY_LIST *tmp;
|
---|
1602 |
|
---|
1603 | if (!lf_hdr) return NULL;
|
---|
1604 |
|
---|
1605 | if ((lf_id = SVAL(&lf_hdr->LF_ID)) != REG_LF_ID) {
|
---|
1606 | fprintf(stderr, "Unrecognized LF Header format: %0X, Block: %0X, %s.\n",
|
---|
1607 | lf_id, (int)lf_hdr, regf->regfile_name);
|
---|
1608 | return NULL;
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 | assert(size < 0);
|
---|
1612 |
|
---|
1613 | count = SVAL(&lf_hdr->key_count);
|
---|
1614 | if (verbose)
|
---|
1615 | fprintf(stdout, "Key Count: %u\n", count);
|
---|
1616 | if (count <= 0) return NULL;
|
---|
1617 |
|
---|
1618 | /* Now, we should allocate a KEY_LIST struct and fill it in ... */
|
---|
1619 |
|
---|
1620 | tmp = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (count - 1) * sizeof(REG_KEY *));
|
---|
1621 | if (!tmp) {
|
---|
1622 | goto error;
|
---|
1623 | }
|
---|
1624 |
|
---|
1625 | tmp->key_count = count;
|
---|
1626 | tmp->max_keys = count;
|
---|
1627 |
|
---|
1628 | for (i=0; i<count; i++) {
|
---|
1629 | NK_HDR *nk_hdr;
|
---|
1630 |
|
---|
1631 | nk_off = IVAL(&lf_hdr->hr[i].nk_off);
|
---|
1632 | if (verbose)
|
---|
1633 | fprintf(stdout, "NK Offset: %0X\n", nk_off);
|
---|
1634 | nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off);
|
---|
1635 | tmp->keys[i] = nt_get_key_tree(regf, nk_hdr, BLK_SIZE(nk_hdr), parent);
|
---|
1636 | if (!tmp->keys[i]) {
|
---|
1637 | goto error;
|
---|
1638 | }
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 | return tmp;
|
---|
1642 |
|
---|
1643 | error:
|
---|
1644 | /*if (tmp) nt_delete_key_list(tmp, False);*/
|
---|
1645 | return NULL;
|
---|
1646 | }
|
---|
1647 |
|
---|
1648 |
|
---|
1649 | /*
|
---|
1650 | * This routine is passed an NK_HDR pointer and retrieves the entire tree
|
---|
1651 | * from there down. It returns a REG_KEY *.
|
---|
1652 | */
|
---|
1653 | static
|
---|
1654 | REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size, REG_KEY *parent)
|
---|
1655 | {
|
---|
1656 | REG_KEY *tmp = NULL, *own;
|
---|
1657 | int name_len, clsname_len, lf_off, val_off, val_count, sk_off, own_off;
|
---|
1658 | unsigned int nk_id;
|
---|
1659 | LF_HDR *lf_hdr;
|
---|
1660 | VL_TYPE *vl;
|
---|
1661 | SK_HDR *sk_hdr;
|
---|
1662 | char key_name[1024];
|
---|
1663 | unsigned char cls_name[1024];
|
---|
1664 |
|
---|
1665 | if (!nk_hdr) return NULL;
|
---|
1666 |
|
---|
1667 | if ((nk_id = SVAL(&nk_hdr->NK_ID)) != REG_NK_ID) {
|
---|
1668 | fprintf(stderr, "Unrecognized NK Header format: %08X, Block: %0X. %s\n",
|
---|
1669 | nk_id, (int)nk_hdr, regf->regfile_name);
|
---|
1670 | return NULL;
|
---|
1671 | }
|
---|
1672 |
|
---|
1673 | assert(size < 0);
|
---|
1674 |
|
---|
1675 | name_len = SVAL(&nk_hdr->nam_len);
|
---|
1676 | clsname_len = SVAL(&nk_hdr->clsnam_len);
|
---|
1677 |
|
---|
1678 | /*
|
---|
1679 | * The value of -size should be ge
|
---|
1680 | * (sizeof(NK_HDR) - 1 + name_len)
|
---|
1681 | * The -1 accounts for the fact that we included the first byte of
|
---|
1682 | * the name in the structure. clsname_len is the length of the thing
|
---|
1683 | * pointed to by clsnam_off
|
---|
1684 | */
|
---|
1685 |
|
---|
1686 | if (-size < (sizeof(NK_HDR) - 1 + name_len)) {
|
---|
1687 | fprintf(stderr, "Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr);
|
---|
1688 | fprintf(stderr, "Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n",
|
---|
1689 | sizeof(NK_HDR), name_len, clsname_len);
|
---|
1690 | /*return NULL;*/
|
---|
1691 | }
|
---|
1692 |
|
---|
1693 | if (verbose) fprintf(stdout, "NK HDR: Name len: %d, class name len: %d\n",
|
---|
1694 | name_len, clsname_len);
|
---|
1695 |
|
---|
1696 | /* Fish out the key name and process the LF list */
|
---|
1697 |
|
---|
1698 | assert(name_len < sizeof(key_name));
|
---|
1699 |
|
---|
1700 | /* Allocate the key struct now */
|
---|
1701 | tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
|
---|
1702 | if (!tmp) return tmp;
|
---|
1703 | memset(tmp, 0, sizeof(REG_KEY));
|
---|
1704 |
|
---|
1705 | tmp->type = (SVAL(&nk_hdr->type)==0x2C?REG_ROOT_KEY:REG_SUB_KEY);
|
---|
1706 |
|
---|
1707 | strncpy(key_name, nk_hdr->key_nam, name_len);
|
---|
1708 | key_name[name_len] = '\0';
|
---|
1709 |
|
---|
1710 | if (verbose) fprintf(stdout, "Key name: %s\n", key_name);
|
---|
1711 |
|
---|
1712 | tmp->name = strdup(key_name);
|
---|
1713 | if (!tmp->name) {
|
---|
1714 | goto error;
|
---|
1715 | }
|
---|
1716 |
|
---|
1717 | /*
|
---|
1718 | * Fish out the class name, it is in UNICODE, while the key name is
|
---|
1719 | * ASCII :-)
|
---|
1720 | */
|
---|
1721 |
|
---|
1722 | if (clsname_len)
|
---|
1723 | { /* Just print in Ascii for now */
|
---|
1724 | unsigned char *clsnamep;
|
---|
1725 | unsigned int clsnam_off;
|
---|
1726 |
|
---|
1727 | clsnam_off = IVAL(&nk_hdr->clsnam_off);
|
---|
1728 | clsnamep = (unsigned char*)LOCN(regf->base, clsnam_off);
|
---|
1729 | if (verbose) fprintf(stdout, "Class Name Offset: %0X\n", clsnam_off);
|
---|
1730 |
|
---|
1731 | memset(cls_name, 0, clsname_len);
|
---|
1732 | uni_to_ascii(clsnamep, cls_name, sizeof(cls_name), clsname_len);
|
---|
1733 |
|
---|
1734 | /*
|
---|
1735 | * XXX:
|
---|
1736 | * I am keeping class name as an ascii string for the moment.
|
---|
1737 | * That means it needs to be converted on output.
|
---|
1738 | * It will also piss off people who need Unicode/UTF-8 strings. Sorry.
|
---|
1739 | */
|
---|
1740 | tmp->class_name = strdup((char*)cls_name);
|
---|
1741 | if (!tmp->class_name) {
|
---|
1742 | goto error;
|
---|
1743 | }
|
---|
1744 |
|
---|
1745 | if (verbose) fprintf(stdout, " Class Name: %s\n", cls_name);
|
---|
1746 |
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 | /*
|
---|
1750 | * Process the owner offset ...
|
---|
1751 | */
|
---|
1752 | own_off = IVAL(&nk_hdr->own_off);
|
---|
1753 | own = (REG_KEY *)LOCN(regf->base, own_off);
|
---|
1754 | if (verbose)
|
---|
1755 | fprintf(stdout, "Owner Offset: %0X\n", own_off);
|
---|
1756 |
|
---|
1757 | if (verbose)
|
---|
1758 | fprintf(stdout, " Owner locn: %0X, Our locn: %0X\n",
|
---|
1759 | (unsigned int)own, (unsigned int)nk_hdr);
|
---|
1760 |
|
---|
1761 | /*
|
---|
1762 | * We should verify that the owner field is correct ...
|
---|
1763 | * for now, we don't worry ...
|
---|
1764 | */
|
---|
1765 | tmp->owner = parent;
|
---|
1766 |
|
---|
1767 | /*
|
---|
1768 | * If there are any values, process them here
|
---|
1769 | */
|
---|
1770 |
|
---|
1771 | val_count = IVAL(&nk_hdr->val_cnt);
|
---|
1772 | if (verbose)
|
---|
1773 | fprintf(stdout, "Val Count: %d\n", val_count);
|
---|
1774 | if (val_count)
|
---|
1775 | {
|
---|
1776 | val_off = IVAL(&nk_hdr->val_off);
|
---|
1777 | vl = (VL_TYPE *)LOCN(regf->base, val_off);
|
---|
1778 | if (verbose)
|
---|
1779 | fprintf(stdout, "Val List Offset: %0X\n", val_off);
|
---|
1780 |
|
---|
1781 | tmp->values = process_vl(regf, *vl, val_count, BLK_SIZE(vl));
|
---|
1782 | if (!tmp->values) {
|
---|
1783 | goto error;
|
---|
1784 | }
|
---|
1785 |
|
---|
1786 | }
|
---|
1787 |
|
---|
1788 | /*
|
---|
1789 | * Also handle the SK header ...
|
---|
1790 | */
|
---|
1791 |
|
---|
1792 | sk_off = IVAL(&nk_hdr->sk_off);
|
---|
1793 | sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off);
|
---|
1794 | if (verbose)
|
---|
1795 | fprintf(stdout, "SK Offset: %0X\n", sk_off);
|
---|
1796 |
|
---|
1797 | if (sk_off != -1) {
|
---|
1798 |
|
---|
1799 | tmp->security = process_sk(regf, sk_hdr, sk_off, BLK_SIZE(sk_hdr));
|
---|
1800 |
|
---|
1801 | }
|
---|
1802 |
|
---|
1803 | lf_off = IVAL(&nk_hdr->lf_off);
|
---|
1804 | if (verbose)
|
---|
1805 | fprintf(stdout, "SubKey list offset: %0X\n", lf_off);
|
---|
1806 |
|
---|
1807 | /*
|
---|
1808 | * No more subkeys if lf_off == -1
|
---|
1809 | */
|
---|
1810 | if (lf_off != -1)
|
---|
1811 | {
|
---|
1812 | lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off);
|
---|
1813 |
|
---|
1814 | tmp->sub_keys = process_lf(regf, lf_hdr, BLK_SIZE(lf_hdr), tmp);
|
---|
1815 | if (!tmp->sub_keys)
|
---|
1816 | goto error;
|
---|
1817 | }
|
---|
1818 |
|
---|
1819 | return tmp;
|
---|
1820 |
|
---|
1821 | error:
|
---|
1822 | /*if (tmp) nt_delete_reg_key(tmp, False);*/
|
---|
1823 | return NULL;
|
---|
1824 | }
|
---|
1825 |
|
---|
1826 | static
|
---|
1827 | int nt_load_registry(REGF *regf)
|
---|
1828 | {
|
---|
1829 | REGF_HDR *regf_hdr;
|
---|
1830 | unsigned int regf_id, hbin_id;
|
---|
1831 | HBIN_HDR *hbin_hdr;
|
---|
1832 | NK_HDR *first_key;
|
---|
1833 |
|
---|
1834 | /* Get the header */
|
---|
1835 |
|
---|
1836 | if ((regf_hdr = nt_get_regf_hdr(regf)) == NULL) {
|
---|
1837 | return -1;
|
---|
1838 | }
|
---|
1839 |
|
---|
1840 | /* Now process that header and start to read the rest in */
|
---|
1841 |
|
---|
1842 | if ((regf_id = IVAL(®f_hdr->REGF_ID)) != REG_REGF_ID) {
|
---|
1843 | fprintf(stderr, "Unrecognized NT registry header id: %0X, %s\n",
|
---|
1844 | regf_id, regf->regfile_name);
|
---|
1845 | return -1;
|
---|
1846 | }
|
---|
1847 |
|
---|
1848 | /*
|
---|
1849 | * Validate the header ...
|
---|
1850 | */
|
---|
1851 | if (!valid_regf_hdr(regf_hdr)) {
|
---|
1852 | fprintf(stderr, "Registry file header does not validate: %s\n",
|
---|
1853 | regf->regfile_name);
|
---|
1854 | return -1;
|
---|
1855 | }
|
---|
1856 |
|
---|
1857 | /* Update the last mod date, and then go get the first NK record and on */
|
---|
1858 |
|
---|
1859 | TTTONTTIME(regf, IVAL(®f_hdr->tim1), IVAL(®f_hdr->tim2));
|
---|
1860 |
|
---|
1861 | /*
|
---|
1862 | * The hbin hdr seems to be just uninteresting garbage. Check that
|
---|
1863 | * it is there, but that is all.
|
---|
1864 | */
|
---|
1865 |
|
---|
1866 | hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ);
|
---|
1867 |
|
---|
1868 | if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID)) != REG_HBIN_ID) {
|
---|
1869 | fprintf(stderr, "Unrecognized registry hbin hdr ID: %0X, %s\n",
|
---|
1870 | hbin_id, regf->regfile_name);
|
---|
1871 | return -1;
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 | /*
|
---|
1875 | * Get a pointer to the first key from the hreg_hdr
|
---|
1876 | */
|
---|
1877 |
|
---|
1878 | if (verbose)
|
---|
1879 | fprintf(stdout, "First Key: %0X\n", IVAL(®f_hdr->first_key));
|
---|
1880 |
|
---|
1881 | first_key = (NK_HDR *)LOCN(regf->base, IVAL(®f_hdr->first_key));
|
---|
1882 | if (verbose) fprintf(stdout, "First Key Offset: %0X\n",
|
---|
1883 | IVAL(®f_hdr->first_key));
|
---|
1884 |
|
---|
1885 | if (verbose) fprintf(stdout, "Data Block Size: %d\n",
|
---|
1886 | IVAL(®f_hdr->dblk_size));
|
---|
1887 |
|
---|
1888 | if (verbose) fprintf(stdout, "Offset to next hbin block: %0X\n",
|
---|
1889 | IVAL(&hbin_hdr->off_to_next));
|
---|
1890 |
|
---|
1891 | if (verbose) fprintf(stdout, "HBIN block size: %0X\n",
|
---|
1892 | IVAL(&hbin_hdr->blk_size));
|
---|
1893 |
|
---|
1894 | /*
|
---|
1895 | * Now, get the registry tree by processing that NK recursively
|
---|
1896 | */
|
---|
1897 |
|
---|
1898 | regf->root = nt_get_key_tree(regf, first_key, BLK_SIZE(first_key), NULL);
|
---|
1899 |
|
---|
1900 | assert(regf->root != NULL);
|
---|
1901 |
|
---|
1902 | /*
|
---|
1903 | * Unmap the registry file, as we might want to read in another
|
---|
1904 | * tree etc.
|
---|
1905 | */
|
---|
1906 |
|
---|
1907 | if (regf->base) munmap(regf->base, regf->sbuf.st_size);
|
---|
1908 | regf->base = NULL;
|
---|
1909 | close(regf->fd); /* Ignore the error :-) */
|
---|
1910 |
|
---|
1911 | return 1;
|
---|
1912 | }
|
---|
1913 |
|
---|
1914 |
|
---|
1915 | /*
|
---|
1916 | * Routines to parse a REGEDIT4 file
|
---|
1917 | *
|
---|
1918 | * The file consists of:
|
---|
1919 | *
|
---|
1920 | * REGEDIT4
|
---|
1921 | * \[[-]key-path\]\n
|
---|
1922 | * <value-spec>*
|
---|
1923 | *
|
---|
1924 | * Format:
|
---|
1925 | * [cmd:]name=type:value
|
---|
1926 | *
|
---|
1927 | * cmd = a|d|c|add|delete|change|as|ds|cs
|
---|
1928 | *
|
---|
1929 | * There can be more than one key-path and value-spec.
|
---|
1930 | *
|
---|
1931 | * Since we want to support more than one type of file format, we
|
---|
1932 | * construct a command-file structure that keeps info about the command file
|
---|
1933 | */
|
---|
1934 |
|
---|
1935 | #define FMT_UNREC -1
|
---|
1936 | #define FMT_REGEDIT4 0
|
---|
1937 | #define FMT_EDITREG1_1 1
|
---|
1938 |
|
---|
1939 | #define FMT_STRING_REGEDIT4 "REGEDIT4"
|
---|
1940 | #define FMT_STRING_EDITREG1_0 "EDITREG1.0"
|
---|
1941 |
|
---|
1942 | #define CMD_NONE 0
|
---|
1943 | #define CMD_ADD_KEY 1
|
---|
1944 | #define CMD_DEL_KEY 2
|
---|
1945 |
|
---|
1946 | #define CMD_KEY 1
|
---|
1947 | #define CMD_VAL 2
|
---|
1948 |
|
---|
1949 | typedef struct val_spec_list {
|
---|
1950 | struct val_spec_list *next;
|
---|
1951 | char *name;
|
---|
1952 | int type;
|
---|
1953 | char *val; /* Kept as a char string, really? */
|
---|
1954 | } VAL_SPEC_LIST;
|
---|
1955 |
|
---|
1956 | typedef struct command_s {
|
---|
1957 | int cmd;
|
---|
1958 | char *key;
|
---|
1959 | int val_count;
|
---|
1960 | VAL_SPEC_LIST *val_spec_list, *val_spec_last;
|
---|
1961 | } CMD;
|
---|
1962 |
|
---|
1963 | typedef struct cmd_line {
|
---|
1964 | int len, line_len;
|
---|
1965 | char *line;
|
---|
1966 | } CMD_LINE;
|
---|
1967 |
|
---|
1968 |
|
---|
1969 |
|
---|
1970 | #define INIT_ALLOC 10
|
---|
1971 |
|
---|
1972 |
|
---|
1973 | /* prints a key */
|
---|
1974 | static
|
---|
1975 | int print_key(const char *path, char *name, char *class_name, int root,
|
---|
1976 | int terminal, int vals, char* newline)
|
---|
1977 | {
|
---|
1978 | if (full_print)
|
---|
1979 | fprintf(stdout, "%s%s/%s", path, name, newline);
|
---|
1980 |
|
---|
1981 | return 1;
|
---|
1982 | }
|
---|
1983 |
|
---|
1984 | /*
|
---|
1985 | * Sec Desc print functions
|
---|
1986 | */
|
---|
1987 | static
|
---|
1988 | void print_type(unsigned char type)
|
---|
1989 | {
|
---|
1990 | switch (type) {
|
---|
1991 | case 0x00:
|
---|
1992 | fprintf(stdout, " ALLOW");
|
---|
1993 | break;
|
---|
1994 | case 0x01:
|
---|
1995 | fprintf(stdout, " DENY");
|
---|
1996 | break;
|
---|
1997 | case 0x02:
|
---|
1998 | fprintf(stdout, " AUDIT");
|
---|
1999 | break;
|
---|
2000 | case 0x03:
|
---|
2001 | fprintf(stdout, " ALARM");
|
---|
2002 | break;
|
---|
2003 | case 0x04:
|
---|
2004 | fprintf(stdout, "ALLOW CPD");
|
---|
2005 | break;
|
---|
2006 | case 0x05:
|
---|
2007 | fprintf(stdout, "OBJ ALLOW");
|
---|
2008 | break;
|
---|
2009 | case 0x06:
|
---|
2010 | fprintf(stdout, " OBJ DENY");
|
---|
2011 | break;
|
---|
2012 | default:
|
---|
2013 | fprintf(stdout, " UNKNOWN");
|
---|
2014 | break;
|
---|
2015 | }
|
---|
2016 | }
|
---|
2017 |
|
---|
2018 | static
|
---|
2019 | void print_flags(unsigned char flags)
|
---|
2020 | {
|
---|
2021 | char flg_output[21];
|
---|
2022 | int some = 0;
|
---|
2023 |
|
---|
2024 | flg_output[0] = 0;
|
---|
2025 | if (!flags) {
|
---|
2026 | fprintf(stdout, " ");
|
---|
2027 | return;
|
---|
2028 | }
|
---|
2029 | if (flags & 0x01) {
|
---|
2030 | if (some) strcat(flg_output, ",");
|
---|
2031 | some = 1;
|
---|
2032 | strcat(flg_output, "OI");
|
---|
2033 | }
|
---|
2034 | if (flags & 0x02) {
|
---|
2035 | if (some) strcat(flg_output, ",");
|
---|
2036 | some = 1;
|
---|
2037 | strcat(flg_output, "CI");
|
---|
2038 | }
|
---|
2039 | if (flags & 0x04) {
|
---|
2040 | if (some) strcat(flg_output, ",");
|
---|
2041 | some = 1;
|
---|
2042 | strcat(flg_output, "NP");
|
---|
2043 | }
|
---|
2044 | if (flags & 0x08) {
|
---|
2045 | if (some) strcat(flg_output, ",");
|
---|
2046 | some = 1;
|
---|
2047 | strcat(flg_output, "IO");
|
---|
2048 | }
|
---|
2049 | if (flags & 0x10) {
|
---|
2050 | if (some) strcat(flg_output, ",");
|
---|
2051 | some = 1;
|
---|
2052 | strcat(flg_output, "IA");
|
---|
2053 | }
|
---|
2054 | if (flags == 0xF) {
|
---|
2055 | if (some) strcat(flg_output, ",");
|
---|
2056 | some = 1;
|
---|
2057 | strcat(flg_output, "VI");
|
---|
2058 | }
|
---|
2059 | fprintf(stdout, " %s", flg_output);
|
---|
2060 | }
|
---|
2061 |
|
---|
2062 | static
|
---|
2063 | void print_perms(int perms)
|
---|
2064 | {
|
---|
2065 | fprintf(stdout, " %8X", perms);
|
---|
2066 | }
|
---|
2067 |
|
---|
2068 | static
|
---|
2069 | void print_sid(sid_t *sid)
|
---|
2070 | {
|
---|
2071 | int i, comps = sid->auths;
|
---|
2072 | fprintf(stdout, "S-%u-%u", sid->ver, sid->auth[5]);
|
---|
2073 |
|
---|
2074 | for (i = 0; i < comps; i++)
|
---|
2075 | fprintf(stdout, "-%u", sid->sub_auths[i]);
|
---|
2076 |
|
---|
2077 | /*fprintf(stdout, "\n");*/
|
---|
2078 | }
|
---|
2079 |
|
---|
2080 | static
|
---|
2081 | void print_acl(ACL *acl, const char *prefix)
|
---|
2082 | {
|
---|
2083 | int i;
|
---|
2084 |
|
---|
2085 | for (i = 0; i < acl->num_aces; i++) {
|
---|
2086 | fprintf(stdout, ";;%s", prefix);
|
---|
2087 | print_type(acl->aces[i]->type);
|
---|
2088 | print_flags(acl->aces[i]->flags);
|
---|
2089 | print_perms(acl->aces[i]->perms);
|
---|
2090 | fprintf(stdout, " ");
|
---|
2091 | print_sid(acl->aces[i]->trustee);
|
---|
2092 | }
|
---|
2093 | }
|
---|
2094 |
|
---|
2095 | static
|
---|
2096 | int print_sec(SEC_DESC *sec_desc)
|
---|
2097 | {
|
---|
2098 | if (!print_security) return 1;
|
---|
2099 | fprintf(stdout, ";; SECURITY\n");
|
---|
2100 | fprintf(stdout, ";; Owner: ");
|
---|
2101 | print_sid(sec_desc->owner);
|
---|
2102 | fprintf(stdout, ";; Group: ");
|
---|
2103 | print_sid(sec_desc->group);
|
---|
2104 | if (sec_desc->sacl) {
|
---|
2105 | fprintf(stdout, ";; SACL:\n");
|
---|
2106 | print_acl(sec_desc->sacl, " ");
|
---|
2107 | }
|
---|
2108 | if (sec_desc->dacl) {
|
---|
2109 | fprintf(stdout, ";; DACL:\n");
|
---|
2110 | print_acl(sec_desc->dacl, " ");
|
---|
2111 | }
|
---|
2112 | return 1;
|
---|
2113 | }
|
---|
2114 |
|
---|
2115 | /*
|
---|
2116 | * Value print function here ...
|
---|
2117 | */
|
---|
2118 | static
|
---|
2119 | int print_val(const char *path, char *val_name, int val_type, int data_len,
|
---|
2120 | void *data_blk, int terminal, int first, int last)
|
---|
2121 | {
|
---|
2122 | unsigned char* data_asc;
|
---|
2123 | char* new_path;
|
---|
2124 | const char* str_type;
|
---|
2125 |
|
---|
2126 | if(!val_name)
|
---|
2127 | val_name = "";
|
---|
2128 | if(!path)
|
---|
2129 | path = "";
|
---|
2130 |
|
---|
2131 | new_path = (char *)malloc(strlen(path)+ strlen(val_name) + 1);
|
---|
2132 | if (!new_path)
|
---|
2133 | return 0; /* Errors? */
|
---|
2134 | new_path[0] = '\0';
|
---|
2135 | strcat(new_path, path);
|
---|
2136 | strcat(new_path, val_name);
|
---|
2137 |
|
---|
2138 | if (str_is_prefix(prefix_filter, new_path))
|
---|
2139 | {
|
---|
2140 | if (!type_filter_enabled || (type_filter == val_type))
|
---|
2141 | {
|
---|
2142 | if(!val_name)
|
---|
2143 | val_name = "<No Name>";
|
---|
2144 |
|
---|
2145 | str_type = val_to_str(val_type,reg_type_names);
|
---|
2146 | if(!str_type)
|
---|
2147 | str_type = "";
|
---|
2148 |
|
---|
2149 | data_asc = data_to_ascii((unsigned char *)data_blk, data_len, val_type);
|
---|
2150 | fprintf(stdout, "%s:%s=%s\n", new_path, str_type, data_asc);
|
---|
2151 |
|
---|
2152 | free(data_asc);
|
---|
2153 | }
|
---|
2154 | }
|
---|
2155 |
|
---|
2156 | free(new_path);
|
---|
2157 | return 1;
|
---|
2158 | }
|
---|
2159 |
|
---|
2160 | static
|
---|
2161 | void usage(void)
|
---|
2162 | {
|
---|
2163 | fprintf(stderr, "Usage: readreg [-f<PREFIX_FILTER>] [-t<TYPE_FILTER>] "
|
---|
2164 | "[-v] [-s] <REGISTRY_FILE>\n");
|
---|
2165 | /* XXX: replace version string with Subversion tag? */
|
---|
2166 | fprintf(stderr, "Version: 0.1\n");
|
---|
2167 | fprintf(stderr, "\n\t-v\t sets verbose mode.");
|
---|
2168 | fprintf(stderr, "\n\t-f\t a simple prefix filter.");
|
---|
2169 | fprintf(stderr, "\n\t-t\t restrict results to a specific type.");
|
---|
2170 | fprintf(stderr, "\n\t-s\t prints security descriptors.");
|
---|
2171 | fprintf(stderr, "\n");
|
---|
2172 | }
|
---|
2173 |
|
---|
2174 |
|
---|
2175 | int main(int argc, char *argv[])
|
---|
2176 | {
|
---|
2177 | REGF *regf;
|
---|
2178 | extern char *optarg;
|
---|
2179 | extern int optind;
|
---|
2180 | int opt;
|
---|
2181 | int regf_opt = 1;
|
---|
2182 |
|
---|
2183 | if (argc < 2)
|
---|
2184 | {
|
---|
2185 | usage();
|
---|
2186 | exit(1);
|
---|
2187 | }
|
---|
2188 |
|
---|
2189 | /*
|
---|
2190 | * Now, process the arguments
|
---|
2191 | */
|
---|
2192 |
|
---|
2193 | while ((opt = getopt(argc, argv, "svf:t:o:c:")) != EOF)
|
---|
2194 | {
|
---|
2195 | switch (opt)
|
---|
2196 | {
|
---|
2197 | case 'f':
|
---|
2198 | /*full_print = 1;*/
|
---|
2199 | prefix_filter = strdup(optarg);
|
---|
2200 | regf_opt++;
|
---|
2201 | break;
|
---|
2202 |
|
---|
2203 | case 't':
|
---|
2204 | type_filter = str_to_val(optarg, reg_type_names);
|
---|
2205 | type_filter_enabled = true;
|
---|
2206 | regf_opt++;
|
---|
2207 | break;
|
---|
2208 |
|
---|
2209 | case 's':
|
---|
2210 | print_security++;
|
---|
2211 | /*full_print++;*/
|
---|
2212 | regf_opt++;
|
---|
2213 | break;
|
---|
2214 |
|
---|
2215 | case 'v':
|
---|
2216 | verbose++;
|
---|
2217 | regf_opt++;
|
---|
2218 | break;
|
---|
2219 |
|
---|
2220 | default:
|
---|
2221 | usage();
|
---|
2222 | exit(1);
|
---|
2223 | break;
|
---|
2224 | }
|
---|
2225 | }
|
---|
2226 |
|
---|
2227 | /*
|
---|
2228 | * We only want to complain about the lack of a default owner SID if
|
---|
2229 | * we need one. This approximates that need
|
---|
2230 | */
|
---|
2231 | if (!def_owner_sid_str) {
|
---|
2232 | def_owner_sid_str = "S-1-5-21-1-2-3-4";
|
---|
2233 | if (verbose)
|
---|
2234 | fprintf(stderr, "Warning, default owner SID not set. Setting to %s\n",
|
---|
2235 | def_owner_sid_str);
|
---|
2236 | }
|
---|
2237 |
|
---|
2238 | if ((regf = nt_create_regf()) == NULL)
|
---|
2239 | {
|
---|
2240 | fprintf(stderr, "Could not create registry object: %s\n", strerror(errno));
|
---|
2241 | exit(2);
|
---|
2242 | }
|
---|
2243 |
|
---|
2244 | if (regf_opt < argc)
|
---|
2245 | { /* We have a registry file */
|
---|
2246 | if (!nt_set_regf_input_file(regf, argv[regf_opt]))
|
---|
2247 | {
|
---|
2248 | fprintf(stderr, "Could not set name of registry file: %s, %s\n",
|
---|
2249 | argv[regf_opt], strerror(errno));
|
---|
2250 | exit(3);
|
---|
2251 | }
|
---|
2252 |
|
---|
2253 | /* Now, open it, and bring it into memory :-) */
|
---|
2254 | if (nt_load_registry(regf) < 0)
|
---|
2255 | {
|
---|
2256 | fprintf(stderr, "Could not load registry: %s\n", argv[1]);
|
---|
2257 | exit(4);
|
---|
2258 | }
|
---|
2259 | }
|
---|
2260 |
|
---|
2261 | /*
|
---|
2262 | * At this point, we should have a registry in memory and should be able
|
---|
2263 | * to iterate over it.
|
---|
2264 | */
|
---|
2265 | nt_key_iterator(regf, regf->root, 0, "");
|
---|
2266 |
|
---|
2267 | return 0;
|
---|
2268 | }
|
---|