1 | |
---|
2 | import sys |
---|
3 | import os |
---|
4 | import functools |
---|
5 | import math |
---|
6 | import statistics |
---|
7 | import gzip |
---|
8 | import random |
---|
9 | try: |
---|
10 | import numpy |
---|
11 | except: |
---|
12 | sys.stderr.write('ERROR: Could not import numpy module. Ensure it is installed.\n') |
---|
13 | sys.stderr.write(' Under Debian, the package name is "python3-numpy"\n.') |
---|
14 | sys.exit(1) |
---|
15 | |
---|
16 | # Don't trust numpy's seeding |
---|
17 | numpy.random.seed(random.SystemRandom().randint(0,2**32-1)) |
---|
18 | |
---|
19 | |
---|
20 | def mad(arr): |
---|
21 | """ Median Absolute Deviation: a "Robust" version of standard deviation. |
---|
22 | Indices variabililty of the sample. |
---|
23 | https://en.wikipedia.org/wiki/Median_absolute_deviation |
---|
24 | """ |
---|
25 | arr = numpy.ma.array(arr).compressed() # should be faster to not use masked arrays. |
---|
26 | med = numpy.median(arr) |
---|
27 | return numpy.median(numpy.abs(arr - med)) |
---|
28 | |
---|
29 | |
---|
30 | def cov(x,y): |
---|
31 | mx = statistics.mean(x) |
---|
32 | my = statistics.mean(y) |
---|
33 | products = [] |
---|
34 | for i in range(0,len(x)): |
---|
35 | products.append((x[i] - mx)*(y[i] - my)) |
---|
36 | |
---|
37 | return statistics.mean(products) |
---|
38 | |
---|
39 | |
---|
40 | def OLSRegression(x,y): |
---|
41 | #print(x,y) |
---|
42 | x = numpy.array(x) |
---|
43 | y = numpy.array(y) |
---|
44 | #A = numpy.vstack([x, numpy.ones(len(x))]).T |
---|
45 | #m, c = numpy.linalg.lstsq(A, y)[0] # broken |
---|
46 | #c,m = numpy.polynomial.polynomial.polyfit(x, y, 1) # less accurate |
---|
47 | c,m = numpy.polynomial.Polynomial.fit(x,y,1).convert().coef |
---|
48 | |
---|
49 | #print(m,c) |
---|
50 | |
---|
51 | #import matplotlib.pyplot as plt |
---|
52 | #plt.clf() |
---|
53 | #plt.scatter(x, y) |
---|
54 | #plt.plot(x, m*x + c, 'r', label='Fitted line') |
---|
55 | #plt.show() |
---|
56 | |
---|
57 | return (m,c) |
---|
58 | |
---|
59 | |
---|
60 | def difference(ls): |
---|
61 | return ls[0]-ls[1] |
---|
62 | |
---|
63 | def product(ls): |
---|
64 | return ls[0]*ls[1] |
---|
65 | |
---|
66 | def hypotenuse(ls): |
---|
67 | return math.hypot(ls[0],ls[1]) |
---|
68 | |
---|
69 | def trustValues(derived, trustFunc): |
---|
70 | ret_val = [] |
---|
71 | for k,v in derived.items(): |
---|
72 | ret_val.append((trustFunc((v['long'],v['short'])), k)) |
---|
73 | |
---|
74 | ret_val.sort() |
---|
75 | return ret_val |
---|
76 | |
---|
77 | |
---|
78 | def prunedWeights(derived, trust, alpha): |
---|
79 | weights = {} |
---|
80 | |
---|
81 | threshold = len(trust)*(1.0-alpha) |
---|
82 | for i in range(0,len(trust)): |
---|
83 | if i < threshold: |
---|
84 | weights[trust[i][1]] = 1.0 |
---|
85 | else: |
---|
86 | weights[trust[i][1]] = 0.0 |
---|
87 | |
---|
88 | return weights |
---|
89 | |
---|
90 | |
---|
91 | def linearWeights(derived, trust, alpha): |
---|
92 | x1 = trust[0][0] |
---|
93 | y1 = 1.0 + (alpha*10) |
---|
94 | x2 = trust[(len(trust)-1)//3][0] |
---|
95 | y2 = 1.0 |
---|
96 | m = (y1-y2)/(x1-x2) |
---|
97 | b = y1 - m*x1 |
---|
98 | |
---|
99 | weights = {} |
---|
100 | for t,k in trust: |
---|
101 | weights[k] = m*t+b |
---|
102 | if weights[k] < 0.0: |
---|
103 | weights[k] = 0.0 |
---|
104 | |
---|
105 | return weights |
---|
106 | |
---|
107 | |
---|
108 | def invertedWeights(derived,trust,alpha): |
---|
109 | # (x+1-first_sample)^(-alpha) |
---|
110 | #scale = trust[0][0] |
---|
111 | |
---|
112 | #weights = {} |
---|
113 | #for t,k in trust: |
---|
114 | # weights[k] = (t+1-scale)**(-1.0*alpha) |
---|
115 | # if weights[k] < 0.0: |
---|
116 | # weights[k] = 0.0 |
---|
117 | |
---|
118 | weights = {} |
---|
119 | for i in range(len(trust)): |
---|
120 | w = 10.0/(i+2.0)-0.2 |
---|
121 | if w < 0.0: |
---|
122 | w = 0.0 |
---|
123 | weights[trust[i][1]] = w |
---|
124 | |
---|
125 | |
---|
126 | return weights |
---|
127 | |
---|
128 | |
---|
129 | |
---|
130 | def arctanWeights(derived,trust,alpha): |
---|
131 | shift = trust[int((len(trust)-1)*(1.0-alpha))][0] |
---|
132 | minimum = trust[0][0] |
---|
133 | |
---|
134 | weights = {} |
---|
135 | for i in range(len(trust)): |
---|
136 | w = math.pi/2.0 - math.atan(2*(trust[i][0] - shift)/(shift-minimum)) |
---|
137 | if w < 0.0: |
---|
138 | w = 0.0 |
---|
139 | weights[trust[i][1]] = w |
---|
140 | |
---|
141 | return weights |
---|
142 | |
---|
143 | |
---|
144 | def arctanWeights2(derived,trust,alpha): |
---|
145 | shift = trust[int((len(trust)-1)*(1.0-alpha))][0] |
---|
146 | minimum = trust[0][0] |
---|
147 | stretch = trust[int((len(trust)-1)*0.5)][0] - minimum # near median |
---|
148 | |
---|
149 | weights = {} |
---|
150 | for i in range(len(trust)): |
---|
151 | w = math.pi/2.0 - math.atan(3*(trust[i][0] - shift)/(shift-minimum)) |
---|
152 | if w < 0.0: |
---|
153 | w = 0.0 |
---|
154 | weights[trust[i][1]] = w |
---|
155 | |
---|
156 | return weights |
---|
157 | |
---|
158 | |
---|
159 | def midsummary(values, distance=25): |
---|
160 | #return (numpy.percentile(values, 50-distance) + numpy.percentile(values, 50+distance))/2.0 |
---|
161 | l,h = numpy.percentile(values, (50-distance,50+distance)) |
---|
162 | return (l+h)/2.0 |
---|
163 | |
---|
164 | def trimean(values, distance=25): |
---|
165 | return (midsummary(values, distance) + statistics.median(values))/2 |
---|
166 | |
---|
167 | def ubersummary(values, distance=25): |
---|
168 | left2 = 50-distance |
---|
169 | left3 = 50-(distance/2.0) |
---|
170 | left1 = left2/2.0 |
---|
171 | right2 = 50+distance |
---|
172 | right3 = 50+(distance/2.0) |
---|
173 | right1 = (right2+100)/2.0 |
---|
174 | l1,l2,l3,r3,r2,r1 = numpy.percentile(values, (left1,left2,left3,right3,right2,right1)) |
---|
175 | #print(l1,l2,l3,m,r3,r2,r1) |
---|
176 | return (l1+l2*4+l3+r3+r2*4+r1)/12.0 |
---|
177 | #return statistics.mean((l1,l2,l3,m,r3,r2,r1)) |
---|
178 | |
---|
179 | |
---|
180 | def quadsummary(values, distance=25): |
---|
181 | left1 = 50-distance |
---|
182 | left2 = (left1+50)/2.0 |
---|
183 | right1 = 50+distance |
---|
184 | right2 = (right1+50)/2.0 |
---|
185 | l1,l2,r2,r1 = numpy.percentile(values, (left1,left2,right2,right1)) |
---|
186 | #print(left1,left2,left3,50,right3,right2,right1) |
---|
187 | #print(l1,l2,l3,m,r3,r2,r1) |
---|
188 | return (l1+l2+r2+r1)/4.0 |
---|
189 | #return statistics.mean((l1,l2,l3,m,r3,r2,r1)) |
---|
190 | |
---|
191 | |
---|
192 | def septasummary(values, distance=25): |
---|
193 | left2 = 50-distance |
---|
194 | left3 = 50-(distance/2.0) |
---|
195 | left1 = left2/2.0 |
---|
196 | right2 = 50+distance |
---|
197 | right3 = 50+(distance/2.0) |
---|
198 | right1 = (right2+100)/2.0 |
---|
199 | l1,l2,l3,m,r3,r2,r1 = numpy.percentile(values, (left1,left2,left3,50,right3,right2,right1)) |
---|
200 | return (l1+l2+l3+m+r3+r2+r1)/7.0 |
---|
201 | |
---|
202 | |
---|
203 | def tsvalwmean(subseries): |
---|
204 | weights = [(s['unusual_packet']+s['other_packet'])**2 for s in subseries] |
---|
205 | normalizer = sum(weights)/len(weights) |
---|
206 | return numpy.mean([weights[i]*(subseries[i]['unusual_tsval']-subseries[i]['other_tsval'])/normalizer |
---|
207 | for i in range(len(weights))]) |
---|
208 | |
---|
209 | #def tsvalwmean(subseries): |
---|
210 | # return numpy.mean([(s['unusual_tsval']-s['other_tsval']) for s in subseries]) |
---|
211 | |
---|
212 | |
---|
213 | def weightedMean(derived, weights): |
---|
214 | normalizer = sum(weights.values())/len(weights) |
---|
215 | return statistics.mean([w*(derived[k]['long']-derived[k]['short'])/normalizer for k,w in weights.items()]) |
---|
216 | |
---|
217 | def weightedMeanTsval(derived, weights): |
---|
218 | normalizer = sum(weights.values())/len(weights) |
---|
219 | return statistics.mean([w*(derived[k]['long_tsval']-derived[k]['short_tsval'])/normalizer for k,w in weights.items()]) |
---|
220 | |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | def estimateMean(trustFunc, weightFunc, alpha, derived): |
---|
225 | trust = trustValues(derived, trustFunc) |
---|
226 | weights = weightFunc(derived, trust, alpha) |
---|
227 | return weightedMean(derived, weights) |
---|
228 | |
---|
229 | |
---|
230 | def estimateMeanTsval(trustFunc, weightFunc, alpha, derived): |
---|
231 | trust = trustValues(derived, trustFunc) |
---|
232 | weights = weightFunc(derived, trust, alpha) |
---|
233 | return weightedMeanTsval(derived, weights) |
---|
234 | |
---|
235 | |
---|
236 | def bootstrap3(estimator, db, probe_type, unusual_case, subseries_size, num_trials): |
---|
237 | ret_val = [] |
---|
238 | for t in range(num_trials): |
---|
239 | ret_val.append(estimator(db.subseries(probe_type, unusual_case, subseries_size))) |
---|
240 | |
---|
241 | return ret_val |
---|
242 | |
---|
243 | |
---|
244 | # Returns 1 if unusual_case is unusual in the expected direction |
---|
245 | # 0 if it isn't unusual |
---|
246 | # -1 if it is unusual in the wrong direction |
---|
247 | def multiBoxTest(params, greater, samples): |
---|
248 | uc = [s['unusual_packet'] for s in samples] |
---|
249 | rest = [s['other_packet'] for s in samples] |
---|
250 | |
---|
251 | uc_high,uc_low = numpy.percentile(uc, (params['high'],params['low'])) |
---|
252 | rest_high,rest_low = numpy.percentile(rest, (params['high'],params['low'])) |
---|
253 | if uc_high < rest_low: |
---|
254 | if greater: |
---|
255 | return -1 |
---|
256 | else: |
---|
257 | return 1 |
---|
258 | |
---|
259 | if rest_high < uc_low: |
---|
260 | if greater: |
---|
261 | return 1 |
---|
262 | else: |
---|
263 | return -1 |
---|
264 | |
---|
265 | return 0 |
---|
266 | |
---|
267 | |
---|
268 | # Returns 1 if unusual_case is unusual in the expected direction |
---|
269 | # 0 otherwise |
---|
270 | def summaryTest(f, params, greater, samples): |
---|
271 | diffs = [s['unusual_packet']-s['other_packet'] for s in samples] |
---|
272 | |
---|
273 | mh = f(diffs, params['distance']) |
---|
274 | #print("estimate:", mh) |
---|
275 | if greater: |
---|
276 | if mh > params['threshold']: |
---|
277 | return 1 |
---|
278 | else: |
---|
279 | return 0 |
---|
280 | else: |
---|
281 | if mh < params['threshold']: |
---|
282 | return 1 |
---|
283 | else: |
---|
284 | return 0 |
---|
285 | |
---|
286 | |
---|
287 | midsummaryTest = functools.partial(summaryTest, midsummary) |
---|
288 | trimeanTest = functools.partial(summaryTest, trimean) |
---|
289 | ubersummaryTest = functools.partial(summaryTest, ubersummary) |
---|
290 | quadsummaryTest = functools.partial(summaryTest, quadsummary) |
---|
291 | septasummaryTest = functools.partial(summaryTest, septasummary) |
---|
292 | |
---|
293 | def rmse(expected, measurements): |
---|
294 | s = sum([(expected-m)**2 for m in measurements])/len(measurements) |
---|
295 | return math.sqrt(s) |
---|
296 | |
---|
297 | def nrmse(expected, measurements): |
---|
298 | return rmse(expected, measurements)/(max(measurements)-min(measurements)) |
---|
299 | |
---|
300 | |
---|
301 | class KalmanFilter1D: |
---|
302 | def __init__(self, x0, P, R, Q): |
---|
303 | self.x = x0 |
---|
304 | self.P = P |
---|
305 | self.R = R |
---|
306 | self.Q = Q |
---|
307 | |
---|
308 | def update(self, z): |
---|
309 | self.x = (self.P * z + self.x * self.R) / (self.P + self.R) |
---|
310 | self.P = 1. / (1./self.P + 1./self.R) |
---|
311 | |
---|
312 | def predict(self, u=0.0): |
---|
313 | self.x += u |
---|
314 | self.P += self.Q |
---|
315 | |
---|
316 | |
---|
317 | def kfilter(params, observations): |
---|
318 | x = numpy.array(observations) |
---|
319 | movement = 0 |
---|
320 | est = [] |
---|
321 | var = [] |
---|
322 | kf = KalmanFilter1D(x0 = quadsummary(x), # initial state |
---|
323 | #P = 10000, # initial variance |
---|
324 | P = 10, # initial variance |
---|
325 | R = numpy.std(x), # msensor noise |
---|
326 | Q = 0) # movement noise |
---|
327 | for round in range(1): |
---|
328 | for d in x: |
---|
329 | kf.predict(movement) |
---|
330 | kf.update(d) |
---|
331 | est.append(kf.x) |
---|
332 | var.append(kf.P) |
---|
333 | |
---|
334 | return({'est':est, 'var':var}) |
---|
335 | |
---|
336 | |
---|
337 | def kalmanTest(params, greater, samples): |
---|
338 | diffs = [s['unusual_packet']-s['other_packet'] for s in samples] |
---|
339 | |
---|
340 | m = kfilter(params, diffs)['est'][-1] |
---|
341 | if greater: |
---|
342 | if m > params['threshold']: |
---|
343 | return 1 |
---|
344 | else: |
---|
345 | return 0 |
---|
346 | else: |
---|
347 | if m < params['threshold']: |
---|
348 | return 1 |
---|
349 | else: |
---|
350 | return 0 |
---|
351 | |
---|
352 | |
---|
353 | def tsvalwmeanTest(params, greater, samples): |
---|
354 | m = tsvalwmean(samples) |
---|
355 | if greater: |
---|
356 | if m > params['threshold']: |
---|
357 | return 1 |
---|
358 | else: |
---|
359 | return 0 |
---|
360 | else: |
---|
361 | if m < params['threshold']: |
---|
362 | return 1 |
---|
363 | else: |
---|
364 | return 0 |
---|
365 | |
---|
366 | |
---|
367 | #from pykalman import KalmanFilter |
---|
368 | def pyKalman4DTest(params, greater, samples): |
---|
369 | kp = params['kparams'] |
---|
370 | #kp['initial_state_mean']=[quadsummary([s['unusual_packet'] for s in samples]), |
---|
371 | # quadsummary([s['other_packet'] for s in samples]), |
---|
372 | # numpy.mean([s['unusual_tsval'] for s in samples]), |
---|
373 | # numpy.mean([s['other_tsval'] for s in samples])] |
---|
374 | kf = KalmanFilter(n_dim_obs=4, n_dim_state=4, **kp) |
---|
375 | smooth,covariance = kf.smooth([(s['unusual_packet'],s['other_packet'],s['unusual_tsval'],s['other_tsval']) |
---|
376 | for s in samples]) |
---|
377 | m = numpy.mean(smooth) |
---|
378 | if greater: |
---|
379 | if m > params['threshold']: |
---|
380 | return 1 |
---|
381 | else: |
---|
382 | return 0 |
---|
383 | else: |
---|
384 | if m < params['threshold']: |
---|
385 | return 1 |
---|
386 | else: |
---|
387 | return 0 |
---|
388 | |
---|