[4] | 1 | |
---|
| 2 | import sys |
---|
| 3 | import os |
---|
[10] | 4 | import functools |
---|
[4] | 5 | import math |
---|
| 6 | import statistics |
---|
| 7 | import gzip |
---|
| 8 | import random |
---|
| 9 | import scipy |
---|
| 10 | import scipy.stats |
---|
| 11 | import numpy |
---|
| 12 | |
---|
| 13 | # Don't trust numpy's seeding |
---|
| 14 | numpy.random.seed(random.SystemRandom().randint(0,2**32-1)) |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | def mad(arr): |
---|
| 18 | """ Median Absolute Deviation: a "Robust" version of standard deviation. |
---|
| 19 | Indices variabililty of the sample. |
---|
| 20 | https://en.wikipedia.org/wiki/Median_absolute_deviation |
---|
| 21 | """ |
---|
| 22 | arr = numpy.ma.array(arr).compressed() # should be faster to not use masked arrays. |
---|
| 23 | med = numpy.median(arr) |
---|
| 24 | return numpy.median(numpy.abs(arr - med)) |
---|
| 25 | |
---|
| 26 | |
---|
| 27 | def cov(x,y): |
---|
| 28 | mx = statistics.mean(x) |
---|
| 29 | my = statistics.mean(y) |
---|
| 30 | products = [] |
---|
| 31 | for i in range(0,len(x)): |
---|
| 32 | products.append((x[i] - mx)*(y[i] - my)) |
---|
| 33 | |
---|
| 34 | return statistics.mean(products) |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | def difference(ls): |
---|
| 38 | return ls[0]-ls[1] |
---|
| 39 | |
---|
| 40 | def product(ls): |
---|
| 41 | return ls[0]*ls[1] |
---|
| 42 | |
---|
| 43 | def hypotenuse(ls): |
---|
| 44 | return math.hypot(ls[0],ls[1]) |
---|
| 45 | |
---|
| 46 | def trustValues(derived, trustFunc): |
---|
| 47 | ret_val = [] |
---|
| 48 | for k,v in derived.items(): |
---|
| 49 | ret_val.append((trustFunc((v['long'],v['short'])), k)) |
---|
| 50 | |
---|
| 51 | ret_val.sort() |
---|
| 52 | return ret_val |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | def prunedWeights(derived, trust, alpha): |
---|
| 56 | weights = {} |
---|
| 57 | |
---|
| 58 | threshold = len(trust)*(1.0-alpha) |
---|
| 59 | for i in range(0,len(trust)): |
---|
| 60 | if i < threshold: |
---|
| 61 | weights[trust[i][1]] = 1.0 |
---|
| 62 | else: |
---|
| 63 | weights[trust[i][1]] = 0.0 |
---|
| 64 | |
---|
| 65 | return weights |
---|
| 66 | |
---|
| 67 | |
---|
| 68 | def linearWeights(derived, trust, alpha): |
---|
| 69 | x1 = trust[0][0] |
---|
| 70 | y1 = 1.0 + (alpha*10) |
---|
| 71 | x2 = trust[(len(trust)-1)//3][0] |
---|
| 72 | y2 = 1.0 |
---|
| 73 | m = (y1-y2)/(x1-x2) |
---|
| 74 | b = y1 - m*x1 |
---|
| 75 | |
---|
| 76 | weights = {} |
---|
| 77 | for t,k in trust: |
---|
| 78 | weights[k] = m*t+b |
---|
| 79 | if weights[k] < 0.0: |
---|
| 80 | weights[k] = 0.0 |
---|
| 81 | |
---|
| 82 | return weights |
---|
| 83 | |
---|
| 84 | |
---|
| 85 | def invertedWeights(derived,trust,alpha): |
---|
| 86 | # (x+1-first_sample)^(-alpha) |
---|
| 87 | #scale = trust[0][0] |
---|
| 88 | |
---|
| 89 | #weights = {} |
---|
| 90 | #for t,k in trust: |
---|
| 91 | # weights[k] = (t+1-scale)**(-1.0*alpha) |
---|
| 92 | # if weights[k] < 0.0: |
---|
| 93 | # weights[k] = 0.0 |
---|
| 94 | |
---|
| 95 | weights = {} |
---|
| 96 | for i in range(len(trust)): |
---|
| 97 | w = 10.0/(i+2.0)-0.2 |
---|
| 98 | if w < 0.0: |
---|
| 99 | w = 0.0 |
---|
| 100 | weights[trust[i][1]] = w |
---|
| 101 | |
---|
| 102 | |
---|
| 103 | return weights |
---|
| 104 | |
---|
| 105 | |
---|
| 106 | |
---|
| 107 | def arctanWeights(derived,trust,alpha): |
---|
| 108 | shift = trust[int((len(trust)-1)*(1.0-alpha))][0] |
---|
| 109 | minimum = trust[0][0] |
---|
| 110 | |
---|
| 111 | weights = {} |
---|
| 112 | for i in range(len(trust)): |
---|
| 113 | w = math.pi/2.0 - math.atan(2*(trust[i][0] - shift)/(shift-minimum)) |
---|
| 114 | if w < 0.0: |
---|
| 115 | w = 0.0 |
---|
| 116 | weights[trust[i][1]] = w |
---|
| 117 | |
---|
| 118 | return weights |
---|
| 119 | |
---|
| 120 | |
---|
| 121 | def arctanWeights2(derived,trust,alpha): |
---|
| 122 | shift = trust[int((len(trust)-1)*(1.0-alpha))][0] |
---|
| 123 | minimum = trust[0][0] |
---|
| 124 | stretch = trust[int((len(trust)-1)*0.5)][0] - minimum # near median |
---|
| 125 | |
---|
| 126 | weights = {} |
---|
| 127 | for i in range(len(trust)): |
---|
| 128 | w = math.pi/2.0 - math.atan(3*(trust[i][0] - shift)/(shift-minimum)) |
---|
| 129 | if w < 0.0: |
---|
| 130 | w = 0.0 |
---|
| 131 | weights[trust[i][1]] = w |
---|
| 132 | |
---|
| 133 | return weights |
---|
| 134 | |
---|
| 135 | |
---|
[10] | 136 | def midsummary(values, distance=25): |
---|
| 137 | #return (numpy.percentile(values, 50-distance) + numpy.percentile(values, 50+distance))/2.0 |
---|
| 138 | l,h = numpy.percentile(values, (50-distance,50+distance)) |
---|
| 139 | return (l+h)/2.0 |
---|
[4] | 140 | |
---|
| 141 | def trimean(values, distance=25): |
---|
[10] | 142 | return (midsummary(values, distance) + statistics.median(values))/2 |
---|
[4] | 143 | |
---|
[10] | 144 | def ubersummary(values, distance=25): |
---|
| 145 | left2 = 50-distance |
---|
| 146 | left1 = left2/2.0 |
---|
| 147 | left3 = (left2+50)/2.0 |
---|
| 148 | right2 = 50+distance |
---|
| 149 | right3 = (right2+50)/2.0 |
---|
| 150 | right1 = (right2+100)/2.0 |
---|
| 151 | l1,l2,l3,r3,r2,r1 = numpy.percentile(values, (left1,left2,left3,right3,right2,right1)) |
---|
| 152 | #print(left1,left2,left3,50,right3,right2,right1) |
---|
| 153 | #print(l1,l2,l3,m,r3,r2,r1) |
---|
| 154 | return (l1+l2*4+l3+r3+r2*4+r1)/12.0 |
---|
| 155 | #return statistics.mean((l1,l2,l3,m,r3,r2,r1)) |
---|
| 156 | |
---|
| 157 | def quadsummary(values, distance=25): |
---|
| 158 | left2 = 50-distance |
---|
| 159 | left1 = left2/2.0 |
---|
| 160 | right2 = 50+distance |
---|
| 161 | right1 = (right2+100)/2.0 |
---|
| 162 | l1,l2,r2,r1 = numpy.percentile(values, (left1,left2,right2,right1)) |
---|
| 163 | #print(left1,left2,left3,50,right3,right2,right1) |
---|
| 164 | #print(l1,l2,l3,m,r3,r2,r1) |
---|
| 165 | return (l1+l2+r2+r1)/4.0 |
---|
| 166 | #return statistics.mean((l1,l2,l3,m,r3,r2,r1)) |
---|
| 167 | |
---|
| 168 | def quadsummary(values, distance=25): |
---|
| 169 | left1 = 50-distance |
---|
| 170 | left2 = (left1+50)/2.0 |
---|
| 171 | right1 = 50+distance |
---|
| 172 | right2 = (right1+50)/2.0 |
---|
| 173 | l1,l2,r2,r1 = numpy.percentile(values, (left1,left2,right2,right1)) |
---|
| 174 | #print(left1,left2,left3,50,right3,right2,right1) |
---|
| 175 | #print(l1,l2,l3,m,r3,r2,r1) |
---|
| 176 | return (l1+l2+r2+r1)/4.0 |
---|
| 177 | #return statistics.mean((l1,l2,l3,m,r3,r2,r1)) |
---|
| 178 | |
---|
| 179 | |
---|
[4] | 180 | def weightedMean(derived, weights): |
---|
| 181 | normalizer = sum(weights.values())/len(weights) |
---|
| 182 | return statistics.mean([w*(derived[k]['long']-derived[k]['short'])/normalizer for k,w in weights.items()]) |
---|
| 183 | |
---|
| 184 | def weightedMeanTsval(derived, weights): |
---|
| 185 | normalizer = sum(weights.values())/len(weights) |
---|
| 186 | return statistics.mean([w*(derived[k]['long_tsval']-derived[k]['short_tsval'])/normalizer for k,w in weights.items()]) |
---|
| 187 | |
---|
| 188 | |
---|
| 189 | def estimateMean(trustFunc, weightFunc, alpha, derived): |
---|
| 190 | trust = trustValues(derived, trustFunc) |
---|
| 191 | weights = weightFunc(derived, trust, alpha) |
---|
| 192 | return weightedMean(derived, weights) |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | def estimateMeanTsval(trustFunc, weightFunc, alpha, derived): |
---|
| 196 | trust = trustValues(derived, trustFunc) |
---|
| 197 | weights = weightFunc(derived, trust, alpha) |
---|
| 198 | return weightedMeanTsval(derived, weights) |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | #def estimateMedian(trustFunc, weightFunc, alpha, derived): |
---|
| 202 | # trust = trustValues(derived, trustFunc) |
---|
| 203 | # weights = weightFunc(derived, trust, alpha) |
---|
| 204 | |
---|
| 205 | # return statistics.median([(derived[k]['long']-derived[k]['short']) for k,w in weights.items() if w > 0.0]) |
---|
| 206 | |
---|
| 207 | def estimateMedian(derived): |
---|
| 208 | return statistics.median([(d['long']-d['short']) for d in derived.values()]) |
---|
| 209 | |
---|
| 210 | |
---|
[10] | 211 | def estimateMidsummary(derived): |
---|
| 212 | return midsummary([(d['long']-d['short']) for d in derived.values()]) |
---|
[4] | 213 | |
---|
| 214 | |
---|
| 215 | def estimateTrimean(derived): |
---|
| 216 | return trimean([(d['long']-d['short']) for d in derived.values()]) |
---|
| 217 | |
---|
| 218 | |
---|
| 219 | def tTest(expected_mean, derived): |
---|
| 220 | diffs = [(d['long']-d['short']) for d in derived.values()] |
---|
| 221 | null_tval, null_pval = scipy.stats.ttest_1samp(diffs, 0.0) |
---|
| 222 | tval, pval = scipy.stats.ttest_1samp(diffs, expected_mean) |
---|
| 223 | |
---|
| 224 | if pval < null_pval: |
---|
| 225 | return 1 |
---|
| 226 | else: |
---|
| 227 | return 0 |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | def diffMedian(derived): |
---|
| 231 | l = [tc['long']-tc['short'] for s,tc in derived.items()] |
---|
| 232 | return statistics.median(l) |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | def subsample_ids(db, probe_type, subsample_size=None): |
---|
| 236 | cursor = db.conn.cursor() |
---|
| 237 | cursor.execute("SELECT max(c) FROM (SELECT count(sample) c FROM probes WHERE type=? GROUP BY test_case)", (probe_type,)) |
---|
| 238 | population_size = cursor.fetchone()[0] |
---|
| 239 | #print("population_size:", population_size) |
---|
| 240 | if subsample_size == None or subsample_size > population_size: |
---|
| 241 | subsample_size = population_size |
---|
| 242 | |
---|
| 243 | start = numpy.random.random_integers(0,population_size-1) |
---|
| 244 | cursor.execute("SELECT sample FROM probes WHERE type=? GROUP BY sample ORDER BY sample LIMIT ? OFFSET ?", (probe_type,subsample_size,start)) |
---|
| 245 | for row in cursor: |
---|
| 246 | subsample_size -= 1 |
---|
| 247 | yield row['sample'] |
---|
| 248 | |
---|
| 249 | if subsample_size > 0: |
---|
| 250 | cursor.execute("SELECT sample FROM probes WHERE type=? GROUP BY sample ORDER BY sample LIMIT ?", (probe_type,subsample_size)) |
---|
| 251 | for row in cursor: |
---|
| 252 | yield row['sample'] |
---|
| 253 | |
---|
| 254 | |
---|
| 255 | def subsample(db, probe_type, subsample_size=None): |
---|
| 256 | cursor = db.conn.cursor() |
---|
| 257 | cursor.execute("SELECT count(test_case) FROM (SELECT test_case FROM probes GROUP BY test_case)") |
---|
| 258 | num_test_cases = cursor.fetchone()[0] |
---|
| 259 | |
---|
| 260 | for sid in subsample_ids(db, probe_type, subsample_size): |
---|
| 261 | cursor.execute("SELECT test_case,tc_order,time_of_day,reported,userspace_rtt,suspect,packet_rtt,tsval_rtt FROM probes p,analysis a WHERE p.sample=? and a.probe_id=p.id", (sid,)) |
---|
| 262 | probes = cursor.fetchall() |
---|
| 263 | if len(probes) != num_test_cases: |
---|
| 264 | sys.stderr.write("WARN: sample %d had %d probes, but %d expected! Discarding...\n" % (sid, len(probes), num_test_cases)) |
---|
| 265 | continue |
---|
| 266 | yield (sid,[dict(r) for r in probes]) |
---|
| 267 | |
---|
[6] | 268 | |
---|
| 269 | def subseries(db, probe_type, unusual_case, size=None, offset=None, field='packet_rtt'): |
---|
[7] | 270 | population_size = db.populationSize(probe_type) |
---|
[6] | 271 | |
---|
| 272 | if size == None or size > population_size: |
---|
| 273 | size = population_size |
---|
| 274 | if offset == None or offset >= population_size or offset < 0: |
---|
| 275 | offset = numpy.random.random_integers(0,population_size-1) |
---|
| 276 | |
---|
| 277 | query=""" |
---|
| 278 | SELECT %(field)s AS unusual_case, |
---|
| 279 | (SELECT avg(%(field)s) FROM probes,analysis |
---|
| 280 | WHERE analysis.probe_id=probes.id AND probes.test_case!=:unusual_case AND probes.type=:probe_type AND sample=u.sample) AS other_cases |
---|
| 281 | FROM (SELECT probes.sample,%(field)s FROM probes,analysis |
---|
| 282 | WHERE analysis.probe_id=probes.id AND probes.test_case =:unusual_case AND probes.type=:probe_type) u |
---|
| 283 | LIMIT :size OFFSET :offset |
---|
| 284 | """ % {"field":field} |
---|
| 285 | |
---|
| 286 | params = {"probe_type":probe_type, "unusual_case":unusual_case, "offset":offset, "size":size} |
---|
[7] | 287 | cursor = db.conn.cursor() |
---|
[6] | 288 | cursor.execute(query, params) |
---|
[7] | 289 | ret_val = [dict(row) for row in cursor.fetchall()] |
---|
| 290 | #for row in cursor: |
---|
| 291 | # size -= 1 |
---|
| 292 | # yield dict(row) |
---|
[6] | 293 | |
---|
[7] | 294 | size -= len(ret_val) |
---|
[6] | 295 | if size > 0: |
---|
| 296 | params['offset'] = 0 |
---|
| 297 | params['size'] = size |
---|
| 298 | cursor.execute(query, params) |
---|
[7] | 299 | ret_val += [dict(row) for row in cursor.fetchall()] |
---|
| 300 | #for row in cursor: |
---|
| 301 | # yield dict(row) |
---|
[6] | 302 | |
---|
[7] | 303 | return ret_val |
---|
[6] | 304 | |
---|
[7] | 305 | |
---|
[4] | 306 | # if test_cases=None, include all of them. Otherwise, include only the specified test cases. |
---|
| 307 | def samples2Distributions(samples, field, test_cases=None): |
---|
| 308 | ret_val = {} |
---|
| 309 | |
---|
| 310 | for sid,probes in samples: |
---|
| 311 | for p in probes: |
---|
| 312 | if p['test_case'] in ret_val: |
---|
| 313 | ret_val[p['test_case']].append(p[field]) |
---|
| 314 | elif test_cases == None or p['test_case'] in test_cases: |
---|
| 315 | ret_val[p['test_case']] = [p[field]] |
---|
| 316 | |
---|
| 317 | |
---|
| 318 | return ret_val |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | def samples2MeanDiffs(samples, field, unusual_case): |
---|
| 322 | ret_val = {} |
---|
| 323 | |
---|
| 324 | for sid,probes in samples: |
---|
| 325 | unusual_value = None |
---|
| 326 | for p in probes: |
---|
| 327 | if p['test_case'] == unusual_case: |
---|
| 328 | unusual_value = p[field] |
---|
| 329 | break |
---|
| 330 | yield statistics.mean([unusual_value-p[field] for p in probes if p['test_case'] != unusual_case]) |
---|
| 331 | |
---|
| 332 | |
---|
| 333 | def bootstrap(estimator, db, probe_type, test_cases, subsample_size, num_trials): |
---|
| 334 | ret_val = [] |
---|
| 335 | for t in range(num_trials): |
---|
| 336 | ret_val.append(estimator(test_cases, subsample(db, probe_type, subsample_size))) |
---|
| 337 | |
---|
| 338 | return ret_val |
---|
| 339 | |
---|
| 340 | |
---|
| 341 | def bootstrap2(estimator, db, probe_type, subsample_size, num_trials): |
---|
| 342 | ret_val = [] |
---|
| 343 | for t in range(num_trials): |
---|
| 344 | ret_val.append(estimator(subsample(db, probe_type, subsample_size))) |
---|
| 345 | |
---|
| 346 | return ret_val |
---|
| 347 | |
---|
| 348 | |
---|
[6] | 349 | def bootstrap3(estimator, db, probe_type, unusual_case, subseries_size, num_trials): |
---|
| 350 | ret_val = [] |
---|
| 351 | for t in range(num_trials): |
---|
[8] | 352 | ret_val.append(estimator(db.subseries(probe_type, unusual_case, subseries_size))) |
---|
[6] | 353 | |
---|
| 354 | return ret_val |
---|
| 355 | |
---|
| 356 | |
---|
[4] | 357 | # Returns the test case name that clearly has higher RTT; otherwise, returns None |
---|
| 358 | def boxTest(params, test_cases, samples): |
---|
| 359 | if len(test_cases) != 2: |
---|
| 360 | # XXX: somehow generalize the box test to handle more than 2 cases |
---|
| 361 | raise Exception() |
---|
| 362 | dists = samples2Distributions(samples,'packet_rtt', test_cases) #XXX: field from params |
---|
| 363 | |
---|
| 364 | tmp1,tmp2 = dists.items() |
---|
| 365 | test_case1,dist1 = tmp1 |
---|
| 366 | test_case2,dist2 = tmp2 |
---|
| 367 | |
---|
| 368 | d1_high = numpy.percentile(dist1, params['high']) |
---|
| 369 | d2_low = numpy.percentile(dist2, params['low']) |
---|
| 370 | if d1_high < d2_low: |
---|
| 371 | return test_case2 |
---|
| 372 | |
---|
| 373 | d1_low = numpy.percentile(dist1, params['low']) |
---|
| 374 | d2_high = numpy.percentile(dist2, params['high']) |
---|
| 375 | |
---|
| 376 | if d2_high < d1_low: |
---|
| 377 | return test_case1 |
---|
| 378 | |
---|
| 379 | return None |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | # Returns 1 if unusual_case is unusual in the expected direction |
---|
| 383 | # 0 if it isn't unusual |
---|
| 384 | # -1 if it is unusual in the wrong direction |
---|
[8] | 385 | def multiBoxTest(params, greater, samples): |
---|
| 386 | uc = [s['unusual_case'] for s in samples] |
---|
| 387 | rest = [s['other_cases'] for s in samples] |
---|
[4] | 388 | |
---|
[10] | 389 | uc_high,uc_low = numpy.percentile(uc, (params['high'],params['low'])) |
---|
| 390 | rest_high,rest_low = numpy.percentile(rest, (params['high'],params['low'])) |
---|
[4] | 391 | if uc_high < rest_low: |
---|
| 392 | if greater: |
---|
| 393 | return -1 |
---|
| 394 | else: |
---|
| 395 | return 1 |
---|
| 396 | |
---|
| 397 | if rest_high < uc_low: |
---|
| 398 | if greater: |
---|
| 399 | return 1 |
---|
| 400 | else: |
---|
| 401 | return -1 |
---|
| 402 | |
---|
| 403 | return 0 |
---|
| 404 | |
---|
| 405 | |
---|
| 406 | # Returns 1 if unusual_case is unusual in the expected direction |
---|
| 407 | # 0 otherwise |
---|
[10] | 408 | def summaryTest(f, params, greater, samples): |
---|
[6] | 409 | diffs = [s['unusual_case']-s['other_cases'] for s in samples] |
---|
[4] | 410 | |
---|
[10] | 411 | mh = f(diffs, params['distance']) |
---|
[4] | 412 | if greater: |
---|
| 413 | if mh > params['threshold']: |
---|
| 414 | return 1 |
---|
| 415 | else: |
---|
| 416 | return 0 |
---|
| 417 | else: |
---|
| 418 | if mh < params['threshold']: |
---|
| 419 | return 1 |
---|
| 420 | else: |
---|
| 421 | return 0 |
---|
| 422 | |
---|
[10] | 423 | midsummaryTest = functools.partial(summaryTest, midsummary) |
---|
| 424 | trimeanTest = functools.partial(summaryTest, trimean) |
---|
| 425 | ubersummaryTest = functools.partial(summaryTest, ubersummary) |
---|
| 426 | quadsummaryTest = functools.partial(summaryTest, quadsummary) |
---|
[4] | 427 | |
---|
| 428 | def rmse(expected, measurements): |
---|
| 429 | s = sum([(expected-m)**2 for m in measurements])/len(measurements) |
---|
| 430 | return math.sqrt(s) |
---|
| 431 | |
---|
| 432 | def nrmse(expected, measurements): |
---|
| 433 | return rmse(expected, measurements)/(max(measurements)-min(measurements)) |
---|
[10] | 434 | |
---|
| 435 | |
---|
| 436 | class KalmanFilter1D: |
---|
| 437 | def __init__(self, x0, P, R, Q): |
---|
| 438 | self.x = x0 |
---|
| 439 | self.P = P |
---|
| 440 | self.R = R |
---|
| 441 | self.Q = Q |
---|
| 442 | |
---|
| 443 | def update(self, z): |
---|
| 444 | self.x = (self.P * z + self.x * self.R) / (self.P + self.R) |
---|
| 445 | self.P = 1. / (1./self.P + 1./self.R) |
---|
| 446 | |
---|
| 447 | def predict(self, u=0.0): |
---|
| 448 | self.x += u |
---|
| 449 | self.P += self.Q |
---|
| 450 | |
---|
| 451 | |
---|
| 452 | def kfilter(params, observations): |
---|
| 453 | x = numpy.array(observations) |
---|
| 454 | movement = 0 |
---|
| 455 | est = [] |
---|
| 456 | var = [] |
---|
| 457 | kf = KalmanFilter1D(x0 = quadsummary(x), # initial state |
---|
| 458 | #P = 10000, # initial variance |
---|
| 459 | P = 10, # initial variance |
---|
| 460 | R = numpy.std(x), # msensor noise |
---|
| 461 | Q = 0) # movement noise |
---|
| 462 | for round in range(1): |
---|
| 463 | for d in x: |
---|
| 464 | kf.predict(movement) |
---|
| 465 | kf.update(d) |
---|
| 466 | est.append(kf.x) |
---|
| 467 | var.append(kf.P) |
---|
| 468 | |
---|
| 469 | return({'est':est, 'var':var}) |
---|
| 470 | |
---|
| 471 | |
---|
| 472 | def kalmanTest(params, greater, samples): |
---|
| 473 | diffs = [s['unusual_case']-s['other_cases'] for s in samples] |
---|
| 474 | |
---|
| 475 | m = kfilter(params, diffs)['est'][-1] |
---|
| 476 | if greater: |
---|
| 477 | if m > params['threshold']: |
---|
| 478 | return 1 |
---|
| 479 | else: |
---|
| 480 | return 0 |
---|
| 481 | else: |
---|
| 482 | if m < params['threshold']: |
---|
| 483 | return 1 |
---|
| 484 | else: |
---|
| 485 | return 0 |
---|
| 486 | |
---|
| 487 | |
---|
| 488 | def kalmanTest2(params, greater, samples): |
---|
| 489 | diffs = [s['unusual_case']-s['other_cases'] for s in samples] |
---|
| 490 | |
---|
| 491 | estimates = [] |
---|
| 492 | size = 500 |
---|
| 493 | for i in range(100): |
---|
| 494 | off = random.randrange(0,len(diffs)) |
---|
| 495 | sub = diffs[off:size] |
---|
| 496 | if len(sub) < size: |
---|
| 497 | sub += diffs[0:size-len(sub)] |
---|
| 498 | estimates.append(kfilter(params, sub)['est'][-1]) |
---|
| 499 | |
---|
| 500 | m = quadsummary(estimates) |
---|
| 501 | if greater: |
---|
| 502 | if m > params['threshold']: |
---|
| 503 | return 1 |
---|
| 504 | else: |
---|
| 505 | return 0 |
---|
| 506 | else: |
---|
| 507 | if m < params['threshold']: |
---|
| 508 | return 1 |
---|
| 509 | else: |
---|
| 510 | return 0 |
---|
| 511 | |
---|