1 | #!/usr/bin/env python3 |
---|
2 | #-*- mode: Python;-*- |
---|
3 | |
---|
4 | import sys |
---|
5 | import time |
---|
6 | import traceback |
---|
7 | import socket |
---|
8 | import datetime |
---|
9 | import http.client |
---|
10 | import subprocess |
---|
11 | import tempfile |
---|
12 | import json |
---|
13 | import gzip |
---|
14 | import statistics |
---|
15 | |
---|
16 | try: |
---|
17 | import requests |
---|
18 | except: |
---|
19 | sys.stderr.write('ERROR: Could not import requests module. Ensure it is installed.\n') |
---|
20 | sys.stderr.write(' Under Debian, the package name is "python3-requests"\n.') |
---|
21 | sys.exit(1) |
---|
22 | |
---|
23 | from .stats import * |
---|
24 | |
---|
25 | |
---|
26 | def getLocalIP(remote_host, remote_port): |
---|
27 | connection = socket.create_connection((remote_host, remote_port)) |
---|
28 | ret_val = connection.getsockname()[0] |
---|
29 | connection.close() |
---|
30 | |
---|
31 | return ret_val |
---|
32 | |
---|
33 | |
---|
34 | def getIfaceForIP(ip): |
---|
35 | try: |
---|
36 | import netifaces |
---|
37 | except: |
---|
38 | sys.stderr.write('ERROR: Could not import netifaces module. Ensure it is installed.\n') |
---|
39 | sys.stderr.write(' Try: pip3 install netifaces\n.') |
---|
40 | sys.exit(1) |
---|
41 | |
---|
42 | for iface in netifaces.interfaces(): |
---|
43 | addrs = netifaces.ifaddresses(iface).get(netifaces.AF_INET, None) |
---|
44 | if addrs: |
---|
45 | for a in addrs: |
---|
46 | if a.get('addr', None) == ip: |
---|
47 | return iface |
---|
48 | |
---|
49 | |
---|
50 | class snifferProcess(object): |
---|
51 | my_ip = None |
---|
52 | my_iface = None |
---|
53 | target_ip = None |
---|
54 | target_port = None |
---|
55 | _proc = None |
---|
56 | _spool = None |
---|
57 | |
---|
58 | def __init__(self, target_ip, target_port): |
---|
59 | self.target_ip = target_ip |
---|
60 | self.target_port = target_port |
---|
61 | self.my_ip = getLocalIP(target_ip, target_port) |
---|
62 | self.my_iface = getIfaceForIP(self.my_ip) |
---|
63 | print(self.my_ip, self.my_iface) |
---|
64 | |
---|
65 | def start(self): |
---|
66 | self._spool = tempfile.NamedTemporaryFile('w+t') |
---|
67 | self._proc = subprocess.Popen(['chrt', '-r', '99', 'nanown-listen', |
---|
68 | self.my_iface, self.my_ip, |
---|
69 | self.target_ip, "%d" % self.target_port, |
---|
70 | self._spool.name, '0']) |
---|
71 | time.sleep(0.25) |
---|
72 | |
---|
73 | def openPacketLog(self): |
---|
74 | return open(self._spool.name, 'rt') |
---|
75 | |
---|
76 | def stop(self): |
---|
77 | if self._proc: |
---|
78 | self._proc.terminate() |
---|
79 | self._proc.wait(2) |
---|
80 | if self._proc.poll() == None: |
---|
81 | self._proc.kill() |
---|
82 | self._proc.wait(1) |
---|
83 | self._proc = None |
---|
84 | |
---|
85 | def is_running(self): |
---|
86 | return (self._proc.poll() == None) |
---|
87 | |
---|
88 | def __del__(self): |
---|
89 | self.stop() |
---|
90 | |
---|
91 | |
---|
92 | def startSniffer(target_ip, target_port, output_file): |
---|
93 | my_ip = getLocalIP(target_ip, target_port) |
---|
94 | my_iface = getIfaceForIP(my_ip) |
---|
95 | return subprocess.Popen(['chrt', '-r', '99', 'nanown-listen', my_iface, my_ip, |
---|
96 | target_ip, "%d" % target_port, output_file, '0']) |
---|
97 | |
---|
98 | def stopSniffer(sniffer): |
---|
99 | sniffer.terminate() |
---|
100 | sniffer.wait(2) |
---|
101 | if sniffer.poll() == None: |
---|
102 | sniffer.kill() |
---|
103 | sniffer.wait(1) |
---|
104 | |
---|
105 | |
---|
106 | # Monkey patching that instruments the HTTPResponse to collect connection source port info |
---|
107 | class MonitoredHTTPResponse(http.client.HTTPResponse): |
---|
108 | local_address = None |
---|
109 | |
---|
110 | def __init__(self, sock, *args, **kwargs): |
---|
111 | self.local_address = sock.getsockname() |
---|
112 | #print(self.local_address) |
---|
113 | super(MonitoredHTTPResponse, self).__init__(sock,*args,**kwargs) |
---|
114 | |
---|
115 | requests.packages.urllib3.connection.HTTPConnection.response_class = MonitoredHTTPResponse |
---|
116 | |
---|
117 | |
---|
118 | def removeDuplicatePackets(packets): |
---|
119 | #return packets |
---|
120 | suspect = '' |
---|
121 | seen = {} |
---|
122 | # XXX: Need to review this deduplication algorithm and make sure it is correct |
---|
123 | for p in packets: |
---|
124 | key = (p['sent'],p['tcpseq'],p['tcpack'],p['payload_len']) |
---|
125 | if (key not in seen): |
---|
126 | seen[key] = p |
---|
127 | continue |
---|
128 | if p['sent']==1 and (seen[key]['observed'] > p['observed']): #earliest sent |
---|
129 | seen[key] = p |
---|
130 | suspect += 's' # duplicated sent packets |
---|
131 | continue |
---|
132 | if p['sent']==0 and (seen[key]['observed'] > p['observed']): #earliest rcvd |
---|
133 | seen[key] = p |
---|
134 | suspect += 'r' # duplicated received packets |
---|
135 | continue |
---|
136 | |
---|
137 | #if len(seen) < len(packets): |
---|
138 | # sys.stderr.write("INFO: removed %d duplicate packets.\n" % (len(packets) - len(seen))) |
---|
139 | |
---|
140 | return suspect,seen.values() |
---|
141 | |
---|
142 | |
---|
143 | def analyzePackets(packets, timestamp_precision, trim_sent=0, trim_rcvd=0): |
---|
144 | suspect,packets = removeDuplicatePackets(packets) |
---|
145 | |
---|
146 | sort_key = lambda d: (d['observed'],d['tcpseq']) |
---|
147 | alt_key = lambda d: (d['tcpseq'],d['observed']) |
---|
148 | sent = sorted((p for p in packets if p['sent']==1 and p['payload_len']>0), key=sort_key) |
---|
149 | rcvd = sorted((p for p in packets if p['sent']==0 and p['payload_len']>0), key=sort_key) |
---|
150 | rcvd_alt = sorted((p for p in packets if p['sent']==0 and p['payload_len']>0), key=alt_key) |
---|
151 | |
---|
152 | s_off = trim_sent |
---|
153 | if s_off >= len(sent): |
---|
154 | suspect += 'd' # dropped packet? |
---|
155 | s_off = -1 |
---|
156 | last_sent = sent[s_off] |
---|
157 | |
---|
158 | r_off = len(rcvd) - trim_rcvd - 1 |
---|
159 | if r_off < 0: |
---|
160 | suspect += 'd' # dropped packet? |
---|
161 | r_off = 0 |
---|
162 | last_rcvd = rcvd[r_off] |
---|
163 | if last_rcvd != rcvd_alt[r_off]: |
---|
164 | suspect += 'R' # reordered received packets |
---|
165 | |
---|
166 | last_sent_ack = None |
---|
167 | try: |
---|
168 | last_sent_ack = min(((p['tcpack'],p['observed'],p) for p in packets |
---|
169 | if p['sent']==0 and p['payload_len']+last_sent['tcpseq']>=p['tcpack']))[2] |
---|
170 | |
---|
171 | except Exception as e: |
---|
172 | sys.stderr.write("WARN: Could not find last_sent_ack.\n") |
---|
173 | |
---|
174 | packet_rtt = last_rcvd['observed'] - last_sent['observed'] |
---|
175 | tsval_rtt = None |
---|
176 | if None not in (timestamp_precision, last_sent_ack): |
---|
177 | tsval_rtt = int(round((last_rcvd['tsval'] - last_sent_ack['tsval'])*timestamp_precision)) |
---|
178 | |
---|
179 | if packet_rtt < 0 or (tsval_rtt != None and tsval_rtt < 0): |
---|
180 | #sys.stderr.write("WARN: Negative packet or tsval RTT. last_rcvd=%s,last_sent=%s\n" % (last_rcvd, last_sent)) |
---|
181 | suspect += 'N' |
---|
182 | |
---|
183 | return {'packet_rtt':packet_rtt, |
---|
184 | 'tsval_rtt':tsval_rtt, |
---|
185 | 'suspect':suspect, |
---|
186 | 'sent_trimmed':trim_sent, |
---|
187 | 'rcvd_trimmed':trim_rcvd},len(sent),len(rcvd) |
---|
188 | |
---|
189 | |
---|
190 | # septasummary and mad for each dist of differences |
---|
191 | def evaluateTrim(db, unusual_case, strim, rtrim): |
---|
192 | cursor = db.conn.cursor() |
---|
193 | query=""" |
---|
194 | SELECT packet_rtt-(SELECT avg(packet_rtt) FROM probes,trim_analysis |
---|
195 | WHERE sent_trimmed=:strim AND rcvd_trimmed=:rtrim AND trim_analysis.probe_id=probes.id AND probes.test_case!=:unusual_case AND sample=u.s AND probes.type in ('train','test')) |
---|
196 | FROM (SELECT probes.sample s,packet_rtt FROM probes,trim_analysis WHERE sent_trimmed=:strim AND rcvd_trimmed=:rtrim AND trim_analysis.probe_id=probes.id AND probes.test_case=:unusual_case AND probes.type in ('train','test') AND 1 NOT IN (select 1 from probes p,trim_analysis t WHERE p.sample=s AND t.probe_id=p.id AND t.suspect LIKE '%R%')) u |
---|
197 | """ |
---|
198 | query=""" |
---|
199 | SELECT packet_rtt-(SELECT avg(packet_rtt) FROM probes,trim_analysis |
---|
200 | WHERE sent_trimmed=:strim AND rcvd_trimmed=:rtrim AND trim_analysis.probe_id=probes.id AND probes.test_case!=:unusual_case AND sample=u.s AND probes.type in ('train','test')) |
---|
201 | FROM (SELECT probes.sample s,packet_rtt FROM probes,trim_analysis WHERE sent_trimmed=:strim AND rcvd_trimmed=:rtrim AND trim_analysis.probe_id=probes.id AND probes.test_case=:unusual_case AND probes.type in ('train','test')) u |
---|
202 | """ |
---|
203 | #TODO: check for "N" in suspect field and return a flag |
---|
204 | |
---|
205 | params = {"strim":strim,"rtrim":rtrim,"unusual_case":unusual_case} |
---|
206 | cursor.execute(query, params) |
---|
207 | differences = [row[0] for row in cursor] |
---|
208 | |
---|
209 | return septasummary(differences),mad(differences) |
---|
210 | |
---|
211 | |
---|
212 | |
---|
213 | def analyzeProbes(db, trim=None, recompute=False): |
---|
214 | db.conn.execute("CREATE INDEX IF NOT EXISTS packets_probe ON packets (probe_id)") |
---|
215 | db.conn.commit() |
---|
216 | |
---|
217 | pcursor = db.conn.cursor() |
---|
218 | pcursor.execute("SELECT tcpts_mean FROM meta") |
---|
219 | try: |
---|
220 | timestamp_precision = pcursor.fetchone()[0] |
---|
221 | except: |
---|
222 | timestamp_precision = None |
---|
223 | |
---|
224 | pcursor.execute("DELETE FROM trim_analysis") |
---|
225 | db.conn.commit() |
---|
226 | if recompute: |
---|
227 | pcursor.execute("DELETE FROM analysis") |
---|
228 | db.conn.commit() |
---|
229 | |
---|
230 | def loadPackets(db): |
---|
231 | cursor = db.conn.cursor() |
---|
232 | #cursor.execute("SELECT * FROM packets ORDER BY probe_id") |
---|
233 | cursor.execute("SELECT * FROM packets WHERE probe_id NOT IN (SELECT probe_id FROM analysis) ORDER BY probe_id") |
---|
234 | |
---|
235 | probe_id = None |
---|
236 | entry = [] |
---|
237 | ret_val = [] |
---|
238 | for p in cursor: |
---|
239 | if probe_id == None: |
---|
240 | probe_id = p['probe_id'] |
---|
241 | if p['probe_id'] != probe_id: |
---|
242 | ret_val.append((probe_id,entry)) |
---|
243 | probe_id = p['probe_id'] |
---|
244 | entry = [] |
---|
245 | entry.append(dict(p)) |
---|
246 | ret_val.append((probe_id,entry)) |
---|
247 | return ret_val |
---|
248 | |
---|
249 | def processPackets(packet_cache, strim, rtrim): |
---|
250 | sent_tally = [] |
---|
251 | rcvd_tally = [] |
---|
252 | analyses = [] |
---|
253 | for probe_id,packets in packet_cache: |
---|
254 | try: |
---|
255 | analysis,s,r = analyzePackets(packets, timestamp_precision,strim,rtrim) |
---|
256 | analysis['probe_id'] = probe_id |
---|
257 | analyses.append(analysis) |
---|
258 | sent_tally.append(s) |
---|
259 | rcvd_tally.append(r) |
---|
260 | except Exception as e: |
---|
261 | #traceback.print_exc() |
---|
262 | sys.stderr.write("WARN: couldn't find enough packets for probe_id=%s\n" % probe_id) |
---|
263 | |
---|
264 | start = time.time() |
---|
265 | db.addTrimAnalyses(analyses) |
---|
266 | db.conn.commit() |
---|
267 | print("addTrimAnalyses: %f" % (time.time()-start)) |
---|
268 | |
---|
269 | return statistics.mode(sent_tally),statistics.mode(rcvd_tally) |
---|
270 | |
---|
271 | #start = time.time() |
---|
272 | packet_cache = loadPackets(db) |
---|
273 | #print("packets loaded in: %f" % (time.time()-start)) |
---|
274 | |
---|
275 | if trim != None: |
---|
276 | best_strim,best_rtrim = trim |
---|
277 | processPackets(packet_cache, best_strim, best_rtrim) |
---|
278 | else: |
---|
279 | num_sent,num_rcvd = processPackets(packet_cache, 0, 0) |
---|
280 | print("num_sent: %d, num_rcvd: %d" % (num_sent,num_rcvd)) |
---|
281 | unusual_case,delta = findUnusualTestCase(db, (0,0)) |
---|
282 | print("unusual_case: %s, delta: %f" % (unusual_case,delta)) |
---|
283 | |
---|
284 | delta_margin = 0.15 |
---|
285 | best_strim = 0 |
---|
286 | best_rtrim = 0 |
---|
287 | |
---|
288 | good_delta,good_mad = evaluateTrim(db, unusual_case, best_strim, best_rtrim) |
---|
289 | print("trim (%d,%d): delta=%f, mad=%f" % (best_strim,best_rtrim, good_delta, good_mad)) |
---|
290 | |
---|
291 | for strim in range(1,num_sent): |
---|
292 | processPackets(packet_cache, strim, best_rtrim) |
---|
293 | delta,mad = evaluateTrim(db, unusual_case, strim, best_rtrim) |
---|
294 | print("trim (%d,%d): delta=%f, mad=%f" % (strim,best_rtrim, delta, mad)) |
---|
295 | if delta*good_delta > 0.0 and (abs(good_delta) - abs(delta)) < abs(delta_margin*good_delta) and mad < good_mad: |
---|
296 | best_strim = strim |
---|
297 | good_delta,good_mad = delta,mad |
---|
298 | else: |
---|
299 | break |
---|
300 | |
---|
301 | for rtrim in range(1,num_rcvd): |
---|
302 | processPackets(packet_cache, best_strim, rtrim) |
---|
303 | delta,mad = evaluateTrim(db, unusual_case, best_strim, rtrim) |
---|
304 | print("trim (%d,%d): delta=%f, mad=%f" % (best_strim, rtrim, delta, mad)) |
---|
305 | if delta*good_delta > 0.0 and (abs(good_delta) - abs(delta)) < abs(delta_margin*good_delta) and mad < good_mad: |
---|
306 | best_rtrim = rtrim |
---|
307 | else: |
---|
308 | break |
---|
309 | |
---|
310 | print("selected trim parameters:",(best_strim,best_rtrim)) |
---|
311 | |
---|
312 | pcursor.execute("""INSERT OR IGNORE INTO analysis |
---|
313 | SELECT id,probe_id,suspect,packet_rtt,tsval_rtt |
---|
314 | FROM trim_analysis |
---|
315 | WHERE sent_trimmed=? AND rcvd_trimmed=?""", |
---|
316 | (best_strim,best_rtrim)) |
---|
317 | db.conn.commit() |
---|
318 | |
---|
319 | return len(packet_cache) |
---|
320 | |
---|
321 | |
---|
322 | |
---|
323 | def parseJSONLines(fp): |
---|
324 | for line in fp: |
---|
325 | yield json.loads(line) |
---|
326 | |
---|
327 | |
---|
328 | def associatePackets(sniffer_fp, db): |
---|
329 | sniffer_fp.seek(0) |
---|
330 | |
---|
331 | # now combine sampler data with packet data |
---|
332 | buffered = [] |
---|
333 | |
---|
334 | cursor = db.conn.cursor() |
---|
335 | cursor.execute("SELECT count(*) count,min(time_of_day) start,max(time_of_day+userspace_rtt) end from probes") |
---|
336 | ptimes = cursor.fetchone() |
---|
337 | window_size = 100*int((ptimes['end']-ptimes['start'])/ptimes['count']) |
---|
338 | #print("associate window_size:", window_size) |
---|
339 | |
---|
340 | db.addPackets(parseJSONLines(sniffer_fp), window_size) |
---|
341 | |
---|
342 | cursor.execute("SELECT count(*) count FROM packets WHERE probe_id is NULL") |
---|
343 | unmatched = cursor.fetchone()['count'] |
---|
344 | if unmatched > 0: |
---|
345 | sys.stderr.write("WARNING: %d observed packets didn't find a home...\n" % unmatched) |
---|
346 | |
---|
347 | return None |
---|
348 | |
---|
349 | |
---|
350 | def enumStoredTestCases(db): |
---|
351 | cursor = db.conn.cursor() |
---|
352 | cursor.execute("SELECT test_case FROM probes GROUP BY test_case") |
---|
353 | return [tc[0] for tc in cursor] |
---|
354 | |
---|
355 | |
---|
356 | def findUnusualTestCase(db, trim=None): |
---|
357 | test_cases = enumStoredTestCases(db) |
---|
358 | if trim != None: |
---|
359 | params = {'strim':trim[0], 'rtrim':trim[1]} |
---|
360 | qsuffix = " AND sent_trimmed=:strim AND rcvd_trimmed=:rtrim" |
---|
361 | table = "trim_analysis" |
---|
362 | else: |
---|
363 | params = {} |
---|
364 | qsuffix = "" |
---|
365 | table = "analysis" |
---|
366 | |
---|
367 | cursor = db.conn.cursor() |
---|
368 | cursor.execute("SELECT packet_rtt FROM probes,"+table+" a WHERE probes.id=a.probe_id AND probes.type in ('train','test')"+qsuffix, params) |
---|
369 | global_tm = quadsummary([row['packet_rtt'] for row in cursor]) |
---|
370 | |
---|
371 | tm_abs = [] |
---|
372 | tm_map = {} |
---|
373 | |
---|
374 | # XXX: if more speed needed, percentile extension to sqlite might be handy... |
---|
375 | for tc in test_cases: |
---|
376 | params['test_case']=tc |
---|
377 | query = """SELECT packet_rtt FROM probes,"""+table+""" a |
---|
378 | WHERE probes.id=a.probe_id AND probes.type in ('train','test') |
---|
379 | AND probes.test_case=:test_case""" + qsuffix |
---|
380 | cursor.execute(query, params) |
---|
381 | tm_map[tc] = quadsummary([row['packet_rtt'] for row in cursor]) |
---|
382 | tm_abs.append((abs(tm_map[tc]-global_tm), tc)) |
---|
383 | |
---|
384 | magnitude,tc = max(tm_abs) |
---|
385 | params['test_case']=tc |
---|
386 | query = """SELECT packet_rtt FROM probes,"""+table+""" a |
---|
387 | WHERE probes.id=a.probe_id AND probes.type in ('train','test') |
---|
388 | AND probes.test_case<>:test_case""" + qsuffix |
---|
389 | cursor.execute(query,params) |
---|
390 | remaining_tm = quadsummary([row['packet_rtt'] for row in cursor]) |
---|
391 | |
---|
392 | delta = tm_map[tc]-remaining_tm |
---|
393 | # Hack to make the chosen unusual_case more intuitive to the user |
---|
394 | if len(test_cases) == 2 and delta < 0.0: |
---|
395 | tc = [t for t in test_cases if t != tc][0] |
---|
396 | delta = abs(delta) |
---|
397 | |
---|
398 | return tc,delta |
---|
399 | |
---|
400 | |
---|
401 | def reportProgress(db, sample_types, start_time): |
---|
402 | cursor = db.conn.cursor() |
---|
403 | output = '' |
---|
404 | total_completed = 0 |
---|
405 | total_requested = 0 |
---|
406 | for st in sample_types: |
---|
407 | cursor.execute("SELECT count(id) c FROM (SELECT id FROM probes WHERE type=? AND time_of_day>? GROUP BY sample)", (st[0],int(start_time*1000000000))) |
---|
408 | count = cursor.fetchone()[0] |
---|
409 | output += " | %s remaining: %6d" % (st[0], st[1]-count) |
---|
410 | total_completed += count |
---|
411 | total_requested += st[1] |
---|
412 | |
---|
413 | rate = total_completed / (time.time() - start_time) |
---|
414 | total_time = total_requested / rate |
---|
415 | eta = datetime.datetime.fromtimestamp(start_time+total_time) |
---|
416 | print("STATUS:",output[3:],"| est. total_time: %s | ETA: %s" % (str(datetime.timedelta(seconds=total_time)), eta.strftime("%Y-%m-%d %X"))) |
---|
417 | |
---|
418 | |
---|
419 | |
---|
420 | def evaluateTestResults(db): |
---|
421 | cursor = db.conn.cursor() |
---|
422 | query = """ |
---|
423 | SELECT classifier FROM classifier_results GROUP BY classifier ORDER BY classifier; |
---|
424 | """ |
---|
425 | cursor.execute(query) |
---|
426 | classifiers = [] |
---|
427 | for c in cursor: |
---|
428 | classifiers.append(c[0]) |
---|
429 | |
---|
430 | best_obs = [] |
---|
431 | best_error = [] |
---|
432 | max_obs = 0 |
---|
433 | for classifier in classifiers: |
---|
434 | query=""" |
---|
435 | SELECT classifier,params,num_observations,(false_positives+false_negatives)/2 error |
---|
436 | FROM classifier_results |
---|
437 | WHERE trial_type='test' |
---|
438 | AND classifier=:classifier |
---|
439 | AND (false_positives+false_negatives)/2.0 < 5.0 |
---|
440 | ORDER BY num_observations,(false_positives+false_negatives) |
---|
441 | LIMIT 1 |
---|
442 | """ |
---|
443 | cursor.execute(query, {'classifier':classifier}) |
---|
444 | row = cursor.fetchone() |
---|
445 | if row == None: |
---|
446 | query=""" |
---|
447 | SELECT classifier,params,num_observations,(false_positives+false_negatives)/2 error |
---|
448 | FROM classifier_results |
---|
449 | WHERE trial_type='test' and classifier=:classifier |
---|
450 | ORDER BY (false_positives+false_negatives),num_observations |
---|
451 | LIMIT 1 |
---|
452 | """ |
---|
453 | cursor.execute(query, {'classifier':classifier}) |
---|
454 | row = cursor.fetchone() |
---|
455 | if row == None: |
---|
456 | sys.stderr.write("WARN: couldn't find test results for classifier '%s'.\n" % classifier) |
---|
457 | continue |
---|
458 | row = dict(row) |
---|
459 | |
---|
460 | best_error.append(dict(row)) |
---|
461 | else: |
---|
462 | best_obs.append(dict(row)) |
---|
463 | |
---|
464 | |
---|
465 | return best_obs,best_error |
---|