#!/usr/bin/env python3 import sys import os import time import random import tempfile import argparse import socket import json import numpy import matplotlib.mlab as mlab import matplotlib.pyplot as plt VERSION = "{DEVELOPMENT}" if VERSION == "{DEVELOPMENT}": script_dir = '.' try: script_dir = os.path.dirname(os.path.realpath(__file__)) except: try: script_dir = os.path.dirname(os.path.abspath(sys.argv[0])) except: pass sys.path.append("%s/../lib" % script_dir) from nanownlib import * from nanownlib.stats import * import nanownlib.storage parser = argparse.ArgumentParser( description="") parser.add_argument('db_file', default=None, help='') options = parser.parse_args() db = nanownlib.storage.db(options.db_file) def differences(db, unusual_case, column='packet_rtt'): cursor = db.conn.cursor() query=""" SELECT %(column)s-(SELECT avg(%(column)s) FROM probes,analysis WHERE analysis.probe_id=probes.id AND probes.test_case!=:unusual_case AND probes.type in ('train','test') AND sample=u.sample) FROM (SELECT probes.sample,%(column)s FROM probes,analysis WHERE analysis.probe_id=probes.id AND probes.test_case =:unusual_case AND probes.type in ('train','test')) u """ % {"column":column} params = {"unusual_case":unusual_case} cursor.execute(query, params) for row in cursor: yield row[0] def timeSeries(db, probe_type, unusual_case): cursor = db.conn.cursor() query=""" SELECT time_of_day,packet_rtt AS uc,(SELECT avg(packet_rtt) FROM probes,analysis WHERE analysis.probe_id=probes.id AND probes.test_case!=:unusual_case AND probes.type=:probe_type AND sample=u.sample) AS oc FROM (SELECT time_of_day,probes.sample,packet_rtt FROM probes,analysis WHERE analysis.probe_id=probes.id AND probes.test_case =:unusual_case AND probes.type=:probe_type) u """ params = {"probe_type":probe_type,"unusual_case":unusual_case} cursor.execute(query, params) for row in cursor: yield {'time_of_day':row['time_of_day'],unusual_case:row['uc'],'other_cases':row['oc']} #samples,derived,null_derived = parse_data(input1) #trust = trustValues(derived, sum) #weights = linearWeights(derived, trust, 0.25) #print('(test): %f' % weightedMean(derived,weights)) diffs = list(differences(db, 'long')) reported_diffs = list(differences(db, 'long', 'reported')) #shorts = [s['packet_rtt'] for s in samples.values() if s['test_case']=='short'] #longs = [s['packet_rtt'] for s in samples.values() if s['test_case']=='long'] short_overtime = [(sample['time_of_day'],sample['short']) for sample in timeSeries(db,'train','short')] long_overtime = [(sample['time_of_day'],sample['long']) for sample in timeSeries(db,'train','long')] diff_overtime = [(sample['time_of_day'],sample['long']-sample['other_cases']) for sample in timeSeries(db,'train','long')] short_overtime.sort() long_overtime.sort() diff_overtime.sort() print('packet_rtt diff median: %f' % statistics.median(diffs)) print('packet_rtt diff midhinge: %f' % midsummary(diffs)) print('packet_rtt diff trimean: %f' % trimean(diffs)) print('packet_rtt diff quadsummary: %f' % quadsummary(diffs)) print('packet_rtt diff ubersummary: %f' % ubersummary(diffs)) print('packet_rtt diff MAD: %f' % mad(diffs)) print('reported diff trimean: %f' % trimean(reported_diffs)) print('reported diff quadsummary: %f' % quadsummary(reported_diffs)) print('reported diff ubersummary: %f' % ubersummary(reported_diffs)) print('reported diff MAD: %f' % mad(reported_diffs)) import cProfile kresults = kfilter({},diffs) #print('packet_rtt diff kfilter: ', numpy.mean(kresults['est']), kresults['var']) print('packet_rtt diff kfilter: ', kresults['est'][-1], kresults['var'][-1]) kresults = kfilter({},reported_diffs) #print('reported diff kfilter: ', numpy.mean(kresults['est']), kresults['var'][-1]) print('reported diff kfilter: ', kresults['est'][-1], kresults['var'][-1]) #all_data = longs+shorts #all_data.sort() #cut_off_low = all_data[0] #cut_off_high = all_data[int(len(all_data)*0.997)] plt.clf() plt.title("Packet RTT over time") plt.xlabel('Time of Day') plt.ylabel('RTT') s = plt.scatter([t for t,rtt in short_overtime], [rtt for t,rtt in short_overtime], s=1, color='red', alpha=0.6) l = plt.scatter([t for t,rtt in long_overtime], [rtt for t,rtt in long_overtime], s=1, color='blue', alpha=0.6) d = plt.scatter([t for t,rtt in diff_overtime], [rtt for t,rtt in diff_overtime], s=1, color='purple', alpha=0.6) plt.legend((s,l,d), ('short','long','difference'), scatterpoints=1) #plt.savefig('paper/figures/comcast-powerboost1.png') plt.show() short_overtime,long_overtime,diff_overtime = None,None,None num_bins = 300 reported_diffs.sort() cut_off_low = reported_diffs[int(len(diffs)*0.003)] cut_off_high = reported_diffs[int(len(diffs)*0.997)] plt.clf() # the histogram of the data n, bins, patches = plt.hist(reported_diffs, num_bins, normed=1, color='black', histtype='step', alpha=0.8, range=(cut_off_low,cut_off_high)) plt.xlabel('RTT Difference') plt.ylabel('Probability') plt.title(r'Histogram - distribution of differences') # Tweak spacing to prevent clipping of ylabel plt.subplots_adjust(left=0.15) #plt.legend() plt.show() #plt.savefig('paper/graphs/dists-vs-dist-of-diffs2.svg') num_bins = 300 diffs.sort() cut_off_low = diffs[int(len(diffs)*0.003)] cut_off_high = diffs[int(len(diffs)*0.997)] plt.clf() # the histogram of the data n, bins, patches = plt.hist(diffs, num_bins, normed=1, color='purple', histtype='step', alpha=0.8, range=(cut_off_low,cut_off_high)) plt.xlabel('RTT Difference') plt.ylabel('Probability') plt.title(r'Histogram - distribution of differences') # Tweak spacing to prevent clipping of ylabel plt.subplots_adjust(left=0.15) #plt.legend() plt.show() #plt.savefig('paper/graphs/dists-vs-dist-of-diffs2.svg') sys.exit(0) num_bins = 150 # the histogram of the data n, bins, patches = plt.hist((shorts,longs), num_bins, normed=1, label=['short', 'long'], color=['red','blue'], histtype='step', alpha=0.8, range=(cut_off_low,cut_off_high)) #n, bins, patches = plt.hist(shorts2+longs2, num_bins, normed=1, facecolor='blue', histtype='step', alpha=0.3) # add a 'best fit' line #y = mlab.normpdf(bins, mu, sigma) #plt.plot(bins, y, 'r--') plt.xlabel('packet_rtt') plt.ylabel('Probability') plt.title(r'Histogram - RTT short and long') # Tweak spacing to prevent clipping of ylabel plt.subplots_adjust(left=0.15) plt.legend() #plt.show() plt.savefig('paper/figures/comcast-powerboost2.svg') num_trials = 200 subsample_sizes = (50,150,300,500,700,1000,2000,3000,5000,7000,10000,15000,20000) estimator = functools.partial(boxTest, 0.07, 0.08) performance = [] for subsample_size in subsample_sizes: estimates = bootstrap(derived, subsample_size, num_trials, estimator) performance.append(100.0*len([e for e in estimates if e == 1])/num_trials) null_performance = [] for subsample_size in subsample_sizes: null_estimates = bootstrap(null_derived, subsample_size, num_trials, estimator) null_performance.append(100.0*len([e for e in null_estimates if e == 0])/num_trials) plt.clf() plt.title("boxTest bootstrap") plt.xlabel('sample size') plt.ylabel('performance') plt.scatter(subsample_sizes, performance, s=2, color='red', alpha=0.6) plt.scatter(subsample_sizes, null_performance, s=2, color='blue', alpha=0.6) plt.show() subsample_sizes = (50,150,300,400,500,700,1000,2000,3000,4000,5000,7000,10000) estimator = diffMedian performance = [] for subsample_size in subsample_sizes: estimates = bootstrap(derived, subsample_size, num_trials, estimator) performance.append(100.0*len([e for e in estimates if e > expected_mean*0.9 and e < expected_mean*1.1])/num_trials) plt.clf() plt.title("diff median bootstrap") plt.xlabel('sample size') plt.ylabel('performance') plt.scatter(subsample_sizes, performance, s=1, color='red', alpha=0.6) plt.show() subsample_sizes = (50,150,300,400,500,700,1000,2000,3000,4000,5000,7000,10000) weight_funcs = (linearWeights, prunedWeights) for wf in weight_funcs: estimator = functools.partial(estimateMean, hypotenuse, wf, 0.40) performance = [] for subsample_size in subsample_sizes: estimates = bootstrap(derived, subsample_size, num_trials, estimator) performance.append(100.0*len([e for e in estimates if e > expected_mean*0.9 and e < expected_mean*1.1])/num_trials) plt.clf() plt.title(repr(wf)) plt.xlabel('sample size') plt.ylabel('performance') plt.scatter(subsample_sizes, performance, s=1, color='red', alpha=0.6) plt.show() num_bins = 300 # the histogram of the data n, bins, patches = plt.hist((tsshorts,tslongs), num_bins, normed=1, label=['short', 'long'], color=['red','blue'], histtype='step', alpha=0.8) #n, bins, patches = plt.hist(shorts2+longs2, num_bins, normed=1, facecolor='blue', histtype='step', alpha=0.3) # add a 'best fit' line #y = mlab.normpdf(bins, mu, sigma) #plt.plot(bins, y, 'r--') plt.xlabel('packet_rtt') plt.ylabel('Probability') plt.title(r'Histogram - tsval_rtt short vs long') # Tweak spacing to prevent clipping of ylabel plt.subplots_adjust(left=0.15) plt.legend() plt.show() #### #trust_methods = [min,max,sum,difference,product] trust_methods = [sum,product,hypotenuse] colors = ['red','blue','green','purple','orange','black'] weight_methods = [prunedWeights, linearWeights] alphas = [i/100.0 for i in range(0,100,2)] plt.clf() plt.title(r'Trust Method Comparison - Linear') plt.xlabel('Alpha') plt.ylabel('Mean error') paths = [] for tm in trust_methods: trust = trustValues(derived, tm) series = [] for alpha in alphas: weights = linearWeights(derived, trust, alpha) series.append(weightedMean(derived, weights) - expected_mean) paths.append(plt.scatter(alphas, series, s=1, color=colors[len(paths)],alpha=0.6)) plt.legend(paths, [repr(tm) for tm in trust_methods], scatterpoints=1) plt.show() plt.clf() plt.title(r'Trust Method Comparison - Pruned') plt.xlabel('Alpha') plt.ylabel('Mean error') paths = [] for tm in trust_methods: trust = trustValues(derived, tm) series = [] for alpha in alphas: weights = prunedWeights(derived, trust, alpha) series.append(weightedMean(derived, weights) - expected_mean) paths.append(plt.scatter(alphas, series, s=1, color=colors[len(paths)],alpha=0.6)) plt.legend(paths, [repr(tm) for tm in trust_methods], scatterpoints=1) plt.show() sys.exit(0) plt.clf() plt.title(r'Trust Method Comparison - Inverted') plt.xlabel('Alpha') plt.ylabel('Mean error') paths = [] for tm in trust_methods: trust = trustValues(derived, tm) series = [] for alpha in alphas: weights = invertedWeights(derived, trust, alpha) series.append(weightedMean(derived, weights) - expected_mean) paths.append(plt.scatter(alphas, series, s=1, color=colors[len(paths)],alpha=0.6)) plt.legend(paths, [repr(tm) for tm in trust_methods], scatterpoints=1) plt.show() plt.clf() plt.title(r'Trust Method Comparison - Arctangent') plt.xlabel('Alpha') plt.ylabel('Mean error') paths = [] for tm in trust_methods: trust = trustValues(derived, tm) series = [] for alpha in alphas: weights = arctanWeights(derived, trust, alpha) series.append(weightedMean(derived, weights) - expected_mean) paths.append(plt.scatter(alphas, series, s=1, color=colors[len(paths)],alpha=0.6)) plt.legend(paths, [repr(tm) for tm in trust_methods], scatterpoints=1) plt.show()